8.1 Writing Formulas

A formula is a mathematical set of instructions that you can use for working something out. For example, s = 4t + 3 is a formula for s - it tells you how to find s, given the value of t. You can write formulas to help solve real-life problems mathematically.

Learning Objective — Spec Ref A3/A21: Use given information to write a formula.

To write a **formula**, you turn **information** about how different **quantities** relate to each other into mathematical operations. Letters represent quantities — they're known as variables. If a variable is **multiplied** by a number or another variable, you can write them without the \times sign, e.g. $4 \times a = 4a$. For example, to find a formula for the amount someone is paid, P. if you know they're paid £9 an hour and work for *h* hours, multiply the number of hours they work by £9. So as a formula, this is P = 9h.

Example 1

The cost (C) of hiring a bike is £5 per hour plus a fixed cost of £25. Write a formula for the cost of hiring a bike for h hours.

1. Multiply the number of hours (h) by the cost per hour.

Cost (in £) for h hours = 5h

2. Add on the fixed cost.

So C = 5h + 25

Tip: The fixed cost doesn't depend on h so it can just be added on at the end. Make sure the units are consistent.

Exercise 1

- Claudia owns f films. Barry owns twice as many films as Claudia. Q1
 - a) How many films does Barry own?
 - b) How many films do Claudia and Barry own in total?
 - c) How many films would they own in total if they each gave away 3 of their films?
- Alf has £18 in the bank. He gets a job and is paid £8 for every hour he works. Assuming he spends Q2nothing, write a formula for the amount of money (£M) Alf will have after he has worked for h hours.
- The instructions for cooking a goose are to cook for 50 minutes per kg, plus 25 minutes. Q3 Write a formula to find the time taken (t minutes) to cook a goose weighing n kg.
- Write a formula for the cost (£C) of having t trees cut down if it costs p pounds per tree Q4 plus a fixed amount of £30.
- A sequence of shapes is made out of matchsticks. Q5 The first shape in the sequence is made from 4 matchsticks. Each subsequent shape in the sequence is made by adding 3 matchsticks to the previous shape. Write a formula for the number of matchsticks (M) needed to make the nth shape in the sequence.

8.2 Substituting into a Formula

Once you have the formula for a problem, you can substitute in values to find a solution.

Learning Objective — Spec Ref A2:

Substitute values into a given formula.

Zamanian and American and American Services Prior Knowledge Clean

Be able to use BODMAS. See p.2.

You can evaluate a formula by replacing the letters in the formula with actual values. This is called **substitution**. Here's the method to follow:

- Write the formula out.
- Write it out again, substituting numbers for letters.
- Work out the calculation using the correct order of operations (BODMAS).

Example 1

Use the formula v = u + at to find v if u = 2.6, a = -18.3 and t = 4.9.

- 1. Write the formula out.
- 2. Replace each letter with its value.
- 3. Work out the calculation step by step v = 2.6 + (-89.67)you do multiplication before addition.
- v = u + at

$$v = 2.6 + (-18.3 \times 4.9)$$

$$v = 2.6 + (-89.67)$$

$$v = -87.07$$

Tip: This is the formula for the final velocity (v) of an object, where u is the initial velocity, a is its constant acceleration and t is time.

Exercise 1

- Q1 If x = 4 and y = 3, find z when:
 - a) z = x + 2

b) z = y - 1

c) z = x + y

d) z = 3y

e) z = 3v - 2

f) z = 6x - y

- Q2 If a = -4 and b = -3, find c when:
 - a) c = a 4

b) c = 4h

c) c = 6b - a

d) $c = b^3$

e) $c = -\frac{4b}{2a}$

f) $c = 5a - b^2$

- Q3 If $r = \frac{3}{4}$ and $s = -\frac{1}{3}$, find q when: a) q = 4r

b) q = -2s

c) q = rs

d) $q = \frac{s}{r}$

e) q = r + s

f) q = 4r + s

In Questions 4 and 5, give all rounded answers to 2 decimal places.

- Q4 Use the formula v = u + at to find v if:
 - a) u = 3, a = 7 and t = 5
 - c) u = 2.3, a = 4.1 and t = 3.4
 - e) u = 3, a = -10 and t = 5.6

- b) u = 12, a = 17 and t = 15
- d) u = 5.25, a = 9.81 and t = 4.39
- f) u = -34, a = -1.37 and t = 63.25
- O5 If x = 12, y = 2.5 and z = -0.25, find w if:
 - a) w = x + 2y 4z
- b) $w = -3x + v^3 (2z)^2$
- c) w = 0.5x yz

- d) $w = -2x^3 + y^2z$
- e) $w = -\frac{12}{x} + \frac{y}{z}$
- f) $w = \frac{x^2 + 3y 8z}{2y^2}$

Wordy problems work in the same way — you write out the formula and substitute in the values. Be careful with **units** — check if the units in the **question** match the units used in the **formula**, and **convert** them if needed (see Section 22).

Example 2

Theo decides to play a game of crazy golf.

The cost of hiring crazy golf equipment, £C, is a fixed price of £3 plus 8p for every minute of use. For g minutes of crazy golf this can be written as the formula C = 0.08g + 3.

Theo plays for 2 hours and 30 minutes. How much will hiring the equipment cost him?

- 1. The formula is for time in minutes, so convert the time in hours to minutes.
- 2 hours = $2 \times 60 = 120$ minutes 120 + 30 = 150 minutes So g = 150 minutes

2. Write out the formula.

- C = 0.08g + 3
- 3. Replace each letter with its value.
- C = 0.08(150) + 3

4. Work out the calculation.

C = 12 + 3 = 15So it will cost Theo £15 to hire the equipment. **Tip:** Make sure you give the final answer in the correct units and link it back to the context.

Exercise 2

- Q1 The formula for working out the average speed (s, in metres per second) of a moving object is $s = \frac{d}{t}$, where d is the distance travelled (in metres) and t is the time taken (in seconds). Find the speed (in metres per second, to 2 d.p.) of each of the following:
 - a) a runner who travels 800 metres in 110 seconds
 - b) a cheetah that travels 400 metres in 14 seconds
 - c) a car that travels 1 km in 1 minute
 - d) a plane that travels 640 km in 1 hour

- Q2 Use the formula $c = \frac{5}{9}(f 32)$ to convert the following temperatures in degrees Fahrenheit (f) to degrees Celsius (c).
 - a) 212 °F
- b) 68 °F
- c) -40 °F
- d) 98.6 °F
- Q3 The sum (S) of the numbers 1 + 2 + 3 + ... + n is given by the formula $S = \frac{1}{2}n(n+1)$. Work out the sum for each of the following.
 - a) $1 + 2 + 3 + \dots + 10$
- b) 1 + 2 + 3 + ... + 100
- c) 1 + 2 + 3 + ... + 1000
- Q4 Find the volumes (V cm³) of the cylinders below to 2 decimal places, using the formula on the left.

8.3 Rearranging Formulas

Rearranging formulas means making a different letter the subject, e.g. getting $y = \frac{x}{2}$ from x = 2y.

Learning Objective — Spec Ref A5:

Rearrange formulas to change the subject.

Prior Knowledge Check:

Be able to simplify expressions (see p.75-76), expand brackets (see p.77) and factorise expressions (see p.80-81).

To **rearrange** a formula to make a **different letter** the **subject**, perform **inverse operations** one by one until that letter is **on its own** on one side of the '=' sign. You might have to **expand brackets**, **factorise** and **collect like terms** together to get the subject on its own.

You're aiming to end up with something in the form ' $\mathbf{A}x = \mathbf{B}'$ (where x is the **subject term** and A and B are **numbers**, **letters** or a mix of both). You then **divide** both sides by A to get ' $x = \dots$ '.

If you ended up with ' $Ax^2 = B'$, you'd need to take **square roots** after dividing by A.

If you do this, remember that there's a **negative root** as well as a **positive root**, so you'll need a \pm sign.

Example 1

Make x the subject of the formula y = 4 + dx.

- 1. You need to make *x* the subject, which means you need to get *x* on its own.
 - To get the dx term on its own, subtract 4 from both sides. v 4 = dx
- 3. You now have the form 'Ax = B', where A = d and B = y 4. To get x on its own, divide both sides by d.
- 4. Write as 'x = '.

$$y = 4 + dx$$

 $\frac{y-4}{d} = x$

$$d = x$$
$$x = \frac{y - 4}{d}$$

Tip: Subtraction is the inverse of addition, and division is the inverse of multiplication.

Tip: An inverse

operation does the opposite of (or 'undoes')

the original operation

e.g. the inverse of

+8 is -8.

Example 2

Make y the subject of the formula $w = \frac{1-y}{2}$.

- 1. To make y the subject, you need to get it on its own.
- 2. Multiply both sides by 2 (the denominator of the fraction) to get rid of the fraction.
- 3. Add *y* to both sides (so it's positive).
- 4. Subtract 2*w* from each side to get *y* on its own.

$$w = \frac{1 - y}{2}$$

- 2w = 1 y
- 2w + y = 1
- y = 1 2w

Example 3

Make r the subject of $V = \frac{4}{3}\pi r^3$.

- 1. To make r the subject, you need to get it on its own.
- 2. Multiply both sides by 3 to get rid of the fraction.
- 3. Divide both sides by 4π .
- 4. Take the cube root of each side and write as r = r.
- $V = \frac{4}{3}\pi r^3$

for the volume of a sphere of radius r — see p.368.

- $\frac{3V}{4\pi} = r^3$
- $\sqrt[3]{\frac{3V}{4\pi}} = r \implies r = \sqrt[3]{\frac{3V}{4\pi}}$

Tip: This is the formula

If the subject appears more than once, you're going to have to do some factorising (see p.80).

Example 4

Make a the subject of the formula x(a + 1) = 3(1 - 2a).

1. Multiply out the brackets.

$$x(a + 1) = 3(1 - 2a)$$

$$ax + x = 3 - 6a$$

- Collect all the a terms on one side and the non-a terms on the other.
- ax + 6a = 3 x

Factorise the left-hand side to get it into the form to 'Aa = B'.

- a(x + 6) = 3 x
- 4. Divide by (x + 6) to get a on its own.
- $a = \frac{3-x}{x+6}$

Exercise 1

Make x the subject of each of the following formulas. O1

a)
$$v = x + 2$$

b)
$$2z = 3r + x$$

c)
$$v = 4x$$

d)
$$k = 2(1 + 2x)$$

e)
$$v = \frac{2}{3}x - 2$$

f)
$$y + 1 = \frac{x-1}{3}$$

- Consider the formula $w = \frac{1}{1 + v}$. O2
 - a) Multiply both sides of the formula by 1 + v.
- b) Hence make *y* the subject of the formula.

Make *v* the subject of the following formulas. O3

a)
$$w = \frac{3}{2y}$$

b)
$$z + 2 = \frac{2}{1 - y}$$

c)
$$uv = \frac{1}{1 - 2y}$$

b)
$$z + 2 = \frac{2}{1 - y}$$
 c) $uv = \frac{1}{1 - 2y}$ d) $a + b = \frac{2}{4 - 3y}$

Consider the formula $2k = 12 - \sqrt{w-2}$. Q4

- a) Make $\sqrt{w-2}$ the subject of the formula.
- b) By first squaring both sides of your answer to part a), make w the subject of the formula.

Q5 Make w the subject of the following formulas.

a)
$$a = \sqrt{w}$$

b)
$$x = 1 + \sqrt{w}$$

c)
$$y = \sqrt{w - 2}$$

d)
$$f - 3 = 2\sqrt{w}$$

e)
$$j = \sqrt{3 + 4w}$$

f)
$$a = \sqrt{1 - 2w}$$

Consider the formula $t = 1 - 3(z + 1)^2$. Q6

- a) Make $(z + 1)^2$ the subject of the formula.
- b) By first square rooting both sides of your answer to part a), make z the subject of the formula.

Make *z* the subject of the following formulas. Q7

a)
$$x = 1 + z^2$$

b)
$$2t = 3 - z^2$$

c)
$$xy = 1 - 4z^2$$

d)
$$t + 2 = 3(z - 2)^2$$

e)
$$g = 4 - (2z + 3)^2$$

f)
$$r = 4 - 2(5 - 3z)^2$$

Make *a* the subject of the following formulas. Q8

$$a) \quad x(a+b) = a-1$$

b)
$$x - ab = c - aa$$

a)
$$x(a + b) = a - 1$$
 b) $x - ab = c - ad$ c) $c = \frac{1 + a}{1 - 2a}$

d)
$$2e = \frac{2+3a}{a}$$

Review Exercise

- Q1 Melanie has half as many sweets as Jane.
 - a) If Jane has *j* sweets, write a formula to calculate the number of sweets (*m*) that Melanie has.
 - b) Find m when j = 24.
- Q2To book a swimming pool for a party, there is a fixed charge of £30 plus a fee of £1.25 for each person who attends.
 - a) Write a formula to calculate the hire cost (£C) for n people.
 - b) Calculate *C* when n = 32.
- $\mathbf{Q}3$ To hire skates at the park there is a fixed charge of £5, plus a charge of £1.70 for each half-hour.
 - a) Write a formula to calculate the cost $(\pounds C)$ for h half-hour periods.
 - b) Calculate the cost of hiring skates for two and a half hours.
 - c) Rearrange your formula to make h the subject.
 - d) Asher spends £15.20 on hiring skates. How long was he skating for?
- Q4 The surface area ($A \text{ cm}^2$) of the shape on the right is given approximately by the formula $A = 21.5d^2$.

- a) Rearrange the formula to make *d* the subject.
- b) Find d if $A = 55 \text{ cm}^2$. Give your answer to 2 s.f.
- The time in minutes (T) taken to cook a joint of beef is given by Q_5 T = 35w + 25, where w is the weight of the joint in kg.
 - a) How long would it take to cook a 1.5 kg joint?
 - b) Make w the subject of the formula.
 - c) What weight of beef needs to be cooked for 207 minutes?
- Q₆ For each of the following formulas, (i) make x the subject, and (ii) find x when y = -1.

- a) $-2 + y = \frac{3}{4 x}$
- b) $y = \frac{1}{\sqrt{1-x}}$
- c) 2(1-x) = y(3+x)

d) $y = \frac{2-3x}{1+2x}$

- e) $y = 8 \frac{1}{\sqrt{x}}$
- f) $2y 1 = 3\sqrt{2 x}$
- Consider the formula $s = \left(\frac{u+v}{2}\right)t$. By rearranging the formula where necessary, find the value of: $\mathbf{Q}7$
 - a) s when u = 2.3, v = 1.7 and t = 4. b) t when s = 3.3, u = 1 and v = 2.
- - c) u when s = 4.5, t = 6 and v = 7.
- d) v when s = 0.5, t = 0.25 and u = 3.
- Consider the formula $x = \frac{1 + \sqrt{y + 3}}{2 z}$. Q8

 - a) Find the value of x when y = 1 and z = -1.
 - b) By first rearranging the formula, find the value of z when y = 6 and x = -2.

Exam-Style Questions

Q1 Olivia is on holiday in Las Vegas. She sees a TV weather forecast which reports that today's maximum temperature will be 104° Fahrenheit. The formula $C = \frac{5}{9} (F - 32)$ can be used to convert temperatures in Fahrenheit (F) to Celsius (C). Work out today's forecast maximum temperature in degrees Celsius.

[2 marks]

Q2 Florence has some matchsticks. The number of matchsticks (m) needed to make a pattern of h hexagons is given by the formula m = 5h + 1.

a) How many matchsticks will Florence need to make a pattern of 6 hexagons?

[1 mark]

b) (i) Rearrange the formula to make *h* the subject.

[2 marks]

(ii) How many hexagons will be in the pattern made with 36 matchsticks?

[1 mark]

Q3 The minimum velocity required for a rocket to leave a planet can be found using the formula $V = \sqrt{\frac{2GM}{r}}$. Make M the subject of this formula. Show your working.

[3 marks]

- **Q4** You are given the formula $g = \frac{8}{5}h + 17$.
 - a) Rearrange the formula to make h the subject.

[2 marks]

- b) Find *h* if:
 - (i) g = 209

[1 mark]

(ii) g = -15

[1 mark]

- Q5 A quarterly gas bill has a fixed charge of £7.50 plus 8p for every unit of gas used.
 - a) Write the formula to calculate $\pounds C$, the cost for n units of gas.

[2 marks]

b) José uses 760 units of gas. How much will he have to pay?

[1 mark]

c) Rearrange your formula from part a) to make n the subject.

[2 marks]

d) Anna's gas bill is £39.50. How many units of gas did she use?

[1 mark]