
2

Review exercise

E

A uniform plank AB of length 5 m and weight 200 N, rests in a horizontal position on supports at C and D, where AC = 0.5 m and BD = 0.75 m. A builder of weight 800 N stands on the plank at M where AM = 2 m, as shown in the diagram. The builder is modelled as a particle and the plank is modelled as a rod. Calculate:

- a the magnitude of the reaction at C (3)
- **b** the magnitude of the reaction at D. (3)
- c State how you have used the modelling assumption that the builder is a particle. (1)

← Section 4.3

E/P

A uniform plank AC of length 5l m and mass m kg, rests in a horizontal position on supports at B and C, where AB = l m and BC = 4l m. The plank is modelled as a rod. Show that:

- a the magnitude of the reaction at B is $\frac{5}{8}mg$ (3)
- **b** the magnitude of the reaction at C is $\frac{3}{9}mg$. (3)
- c State how you have used the modelling assumption that the plank is:

i uniform (1)

ii a rod. (1)

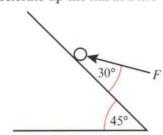
← Section 4.3

(E) 3 A B C D

A uniform rod AD of length 10 m and weight 500 N, rests in a horizontal position on supports at B and C, where AB = 2 m and BC = 4 m.

- a Calculate the largest weight that can be placed at D before the rod starts to tip. (3)
- b Calculate the largest weight that can be placed at A before the rod starts to tip.
 (3)

← Sections 4.3, 4.5


A lever consists of a uniform steel rod *AB* of weight 200 N and length 3 m, which rests on a pivot at *C*. A 2000 N weight is placed at *B*, and is supported by a force of 200 N applied vertically downwards at *A*. Given that the lever is in equilibrium, calculate the length *CB*.

← Sections 4.3, 4.5

5 A particle of mass 3 kg is moving up a rough slope that is inclined at an angle α to the horizontal where $\tan \alpha = \frac{5}{12}$. A force of magnitude P N acts horizontally on the particle towards the plane. Given that the coefficient of friction between the particle and the slope is 0.2 and that the particle is moving at a constant velocity, calculate the value of P.

← Sections 5.2, 5.3

6 A particle of mass 2 kg sits on a smooth slope that is inclined at 45° to the horizontal. A force of FN acts at an angle of 30° to the plane on the particle causing it to accelerate up the hill at 2 m s⁻².

Show that $F = \frac{2}{\sqrt{3}} (4 + \sqrt{2}g) \text{ N}.$

← Sections 5.2, 5.3

- 7 A shipping container of mass 15000 kg is being pulled by a winch up a rough slope that is inclined at 10° to the horizontal. The winch line imparts a constant force of 42000 N, which acts parallel to and up the slope, causing the shipping container to accelerate at a constant rate of 0.1 m s⁻². Calculate:
 - a the reaction between the shipping container and the slope (2)
 - **b** the coefficient of friction, μ , between the shipping container and the slope.

When the shipping container is travelling at 2 m s⁻¹ the engine is turned off.

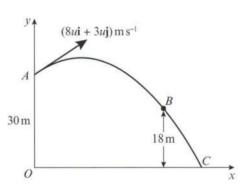
- c Find the time taken for the shipping container to come to rest. (3)
- d Determine whether the shipping container will remain at rest, justifying your answer carefully. (2)

← Sections 5.2, 5.3

- 8 A ball is projected horizontally from a tabletop at a height of 0.8 m above level ground. Given that the initial velocity of the ball is 2 m s⁻¹, find:
 - a the time taken for the ball to reach the ground (3)

b the horizontal distance between the table edge and the point where the ball lands.

(2)


← Section 6.1

- 9 A football is kicked horizontally off a platform of height 20 m and lands a horizontal distance of 40.0 m from the edge of the platform.
 - a Find the initial horizontal velocity of the football. (5)
 - **b** State two assumptions you have made in your calculations, and comment on the validity of each assumption. (2)

← Section 6.1

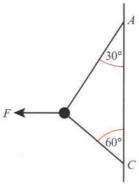
- 10 A projectile is launched from a point on horizontal ground with speed 150 m s⁻¹ at an angle of 10° above the horizontal. Find:
 - a the time the projectile takes to reach its highest point above the ground (4)
 - **b** the range of the projectile. (4)

← Sections 6.2, 6.3

In this question, the unit vectors i and j are in a vertical plane, i being horizontal and j being vertical.

A particle P is projected from a point A with position vector 30 m with respect to a fixed origin O. The velocity of projection is (8ui + 3uj) m s⁻¹. The particle moves freely under gravity, passing through a point B, which has position vector (ki + 18j) m, where k is a constant, before reaching the point C on the x-axis, as shown in the figure above. The particle takes 3 s to move from A to B.

Find:


- **a** the value of u (4)
- **b** the value of k (2)
- c the angle the velocity of P makes with the x-axis as it reaches C. (6)

← Sections 6.2, 6.3

- E 12 A particle *P* is projected from the origin with velocity (12i + 24j) m s⁻¹, where i and j are horizontal and vertical unit vectors respectively. The particle moves freely under gravity. Find:
 - a the position vector of P after 3 s (4)
 - **b** the speed of *P* after 3 s. (4)

← Sections 6.2, 6.3

- P 13 A projectile is launched from a point on a horizontal plane with initial speed $u \, \text{m s}^{-1}$ at an angle of elevation α . The particle moves freely under gravity until it strikes the plane. The range of the projectile is $R \, \text{m}$.
 - **a** Show that the time of flight of the particle is $\frac{2u \sin \alpha}{g}$ seconds.
 - **b** Show that $R = \frac{u^2 \sin 2\alpha}{g}$.
 - c Deduce that, for a fixed u, the greatest possible range is when $\alpha = 45^{\circ}$.
 - **d** Given that $R = \frac{2u^2}{5g}$, find the two possible values of the angle of elevation at which the projectile could have been launched. \leftarrow Section 6.4
 - 14 A smooth bead B of mass 1 kg is threaded on a light inextensible string. The ends of the string are attached to two fixed points A and C where A is vertically above C. The bead is held in equilibrium by a horizontal force F. AB and BC make angles of 30° and 60° respectively with the vertical, as shown in diagram.

a Show that the tension in the string is

$$\frac{2g}{\sqrt{3}-1} \text{ N.} \tag{3}$$

- **b** Calculate the magnitude of F. (3)
- c State how you have used the fact that the bead is smooth in your calculations. (1)

← Section 7.2

15 A crate of mass 500 kg sits on a hill which is inclined at an angle α to the horizontal where $\tan \alpha = \frac{7}{24}$. The coefficient of friction between the hill and the crate is 0.15, and the crate is held at rest by a force of magnitude FN which acts parallel to and up the line of greatest slope of the hill.

By modelling the crate as a particle,

- a show that the normal reaction of the hill on the crate is 480g N (3)
- **b** work out the minimum value of F. (3)

← Section 7.3

16 A ladder *PQ* of mass 25 kg and length 6 metres, rests with its base, *P*, on rough horizontal ground and its top, *Q*, leaning against a smooth vertical wall. The coefficient of friction between the ladder and the ground is 0.25. The ladder lies in a vertical plane perpendicular to the wall and the ground, and is inclined at an angle 60° to the horizontal.

A builder of mass 75 kg climbs up the ladder. Modelling the builder as a particle and the ladder as a uniform rod, find

the maximum distance up the ladder the builder can climb before the ladder begins to slip. (10)

← Section 7.4

17 A uniform ladder PQ of mass m kg and length l metres, rests with one end P on rough horizontal ground and the other end Q against a smooth vertical wall. The coefficient of friction between the ladder and the ground is μ . The ladder lies in a vertical plane perpendicular to the wall and the ground, and is inclined at an angle α to the horizontal. Given that the ladder is on the point of slipping, find an expression for μ in terms of α . (10)

← Section 7.4

18 A non-uniform ladder *AB* of weight 240 N and length 6 m rests with its end A on smooth horizontal ground and its end B against a rough vertical wall. The coefficient of friction between the ladder and the wall is 0.3. The centre of mass of the ladder is 2 m from A. The ladder lies in a vertical plane perpendicular to the wall and the ground, and is inclined at an angle α to the horizontal, where $\tan \alpha = \frac{3}{2}$. The ladder can be prevented from sliding down the wall by applying a horizontal force of magnitude PN to the bottom of the ladder. By modelling the ladder as a non-uniform rod determine the minimum value of P. (10)

← Section 7.4

19 A sled of mass 5 kg is released from rest on a hill that is angled at α to the horizontal where $\tan \alpha = \frac{1}{5}$. The coefficient of friction between the sled and the hill is 0.15. By modelling the sled as a particle work out how long it takes the sled to travel 200 m. (6)

← Section 7.5

E/P 20 At 10 am two aeroplanes P and Q have position vectors $\mathbf{r}_P = (400\mathbf{i} + 200\mathbf{j})$ km and $\mathbf{r}_Q = (500\mathbf{i} - 100\mathbf{j})$ km relative to a fixed origin Q. Their velocities are

 $\mathbf{v}_p = (300\mathbf{i} + 250\mathbf{j}) \,\text{km h}^{-1} \,\text{and}$ $\mathbf{v}_o = (600\mathbf{i} - 200\mathbf{j}) \,\text{km h}^{-1}.$

a Write down expressions for the position vectors of P and Q after a time t hours.

b Find the displacement vector of Q relative to P at 10 am. (2)

c Work out the distance between *P* and *O* at noon. (4)

← Section 8.1

21 A particle *P* of mass 2 kg moves in a straight line under the action of a variable force *F* N. At time t ($t \ge 0$), the displacement x m of *P* from a fixed point *O* is given by $x = 3t - \frac{2k}{2t - 1}$, where k is a constant. When t = 0, the velocity of *P* is 10 m s^{-1} .

a Show that $k = \frac{7}{4}$ (4)

b Find the distance of *P* from *O* when t = 2 s. (2)

← Sections 8.3, 8.4

E 22 A particle *P* moves in a plane such that at time *t* seconds, where $t \ge 0$, it has position vector

$$\mathbf{r} = \left(\left(\frac{1}{3}t^3 + 2t \right) \mathbf{i} + \left(\frac{1}{2}t^2 - 1 \right) \mathbf{j} \right) \mathbf{m}$$

Find:

a the velocity vector of P at time t seconds (2)

b the speed of P when t = 5 s (3)

c the magnitude and direction of the acceleration of P when t = 2 s. (4)

← Sections 8.3, 8.4

E 23 A particle is acted upon by a variable force *F*. At time *t* seconds the displacement of the particle in metres relative to a fixed origin *O* is given by

$$\mathbf{r} = (4t^2 + 1)\mathbf{i} + (2t^2 - 3)\mathbf{j}$$

- a Find the velocity of the particle when t = 3 s. (3)
- **b** Show that the acceleration of the particle is constant.

← Sections 8.3, 8.4

(2)

24 A particle *P* moves so that its velocity $\mathbf{v} \, \mathbf{m} \, \mathbf{s}^{-1}$ at time *t* seconds, where $t \ge 0$, is given by $\mathbf{v} = -2t\mathbf{i} + 3\sqrt{t}\mathbf{j}$. When t = 0, the displacement of *P* relative to a fixed origin is $2\mathbf{j} \, \mathbf{m}$.

Find the distance of P from O when t = 4 s. (7)

← Sections 8.3, 8.5

E 25 A particle moves in a plane with acceleration a m s⁻² where

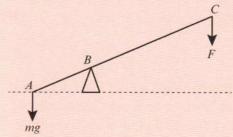
 $\mathbf{a} = t(2 - 3t^2)\mathbf{i} - 4(2t + 1)\mathbf{j}, t \ge 0$

When t = 0, the velocity of P is $(3\mathbf{i} + \mathbf{j}) \,\text{m s}^{-1}$. Find:

- a the velocity of P after t s (4)
- b the time at which P is moving in the direction of i.

← Sections 8.3, 8.5

26 In this question i and j are horizontal unit vectors due east and due north respectively.


A wind surfer is surfing on a lake. The acceleration of the wind surfer at time t s is given by $\mathbf{a} = (-4t\mathbf{i} - 2\mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-2}$. At time t = 0 s the windsurfer is moving directly east at a speed of $8 \,\mathrm{m} \,\mathrm{s}^{-1}$.

- a Find v in terms of t. (4)
- b Find the value of t when the windsurfer is moving in a southerly direction.

← Sections 8.3, 8.5

Challenge

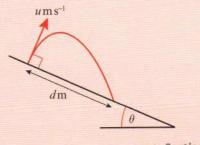
1

A lever consists of a uniform steel rod AC of weight 100 N and length 2k m, which rests on a pivot at B that has a height of 0.3k m. AB = 0.5k m. A mass m kg is attached to the lever at A. The mass is lifted by means of a force of magnitude FN that is applied vertically downwards at C. Show that $F > \frac{1}{3}(mg - 100)$.

← Section 4.3, 4.5

2 A particle P travels in a straight line such that its velocity, $v \text{ m s}^{-1}$ at time t seconds, is given by

$$v = 3 \sin kt + \cos kt, t \ge 0$$


where k is a constant and angles are measured in degrees. At time t=0, the particle is at a fixed origin, O, and has acceleration 1.5 m s⁻².

Work out the maximum distance of the particle from the origin in its subsequent motion, and the first time at which this occurs.

← Section 8.1

3 A straight hill slopes upwards at an angle of θ to the horizontal, where $0 \le \theta < 90^\circ$. A projectile is launched perpendicular to the plane of the hill, with an initial velocity of $u \text{ m s}^{-1}$, and lands a distance d m down the hill.

Show that $d = \frac{2u^2}{g} \tan \theta \sec \theta$.

← Section 6.4