6

Trigonometric functions

Objectives

After completing this chapter you should be able to:

- Understand the definitions of secant, cosecant and cotangent and their relationship to cosine, sine and tangent → pages 143-145
- Understand the graphs of secant, cosecant and cotangent and their domain and range → pages 145-149
- Simplify expressions, prove simple identities and solve equations involving secant, cosecant and cotangent → pages 149–153
- Prove and use $\sec^2 x \equiv 1 + \tan^2 x$ and $\csc^2 x \equiv 1 + \cot^2 x$

→ pages 153-157

 Understand and use inverse trigonometric functions and their domain and ranges. → pages 158-161

You will use the functions in this chapter

in chapters 9 and 12.

together with differentiation and integration

← Section 5.5

Find all the solutions in the interval

 $0 \le x \le 2\pi$ to the equation $3 \sin^2(2x) = 1$.

Secant, cosecant and cotangent

Secant (sec), cosecant (cosec) and cotangent (cot) are known as the reciprocal trigonometric functions.

- \blacksquare sec $x = \frac{1}{\cos x}$ (undefined for values of x for which $\cos x = 0$)
- $\mathbf{v} = \operatorname{cosec} x = \frac{1}{\sin x}$ (undefined for values of \boldsymbol{x} for which $\sin \boldsymbol{x} = \mathbf{0}$)
- $= \cot x = \frac{1}{\tan x}$ (undefined for values of x for which $\tan x = 0$)

You can also write cot x in terms of $\sin x$ and $\cos x$.

$$\cot x = \frac{\cos x}{\sin x}$$

Example

Use your calculator to write down the values of:

- a sec 280°
- b cot 115°

a sec
$$280^{\circ} = \frac{1}{\cos 280^{\circ}} = 5.76 (3 \text{ s.f.})$$
 b cot $115^{\circ} = \frac{1}{\cos 280^{\circ}} = -0.466 (3 \text{ s.f.})$

Make sure your calculator is in degrees mode.

b cot $115^{\circ} = \frac{1}{\tan 115^{\circ}} = -0.466 (3 \text{ s.f.})$

Example

Work out the exact values of:

- a sec 210°
- **b** cosec $\frac{3\pi}{4}$

Exact here means give in surd form.

210° is in 3rd quadrant, so $\cos 210^\circ = -\cos 30^\circ$.

Or sec 210° = $-\frac{2\sqrt{3}}{3}$ if you rationalise the denominator.

So cosec
$$\frac{3\pi}{4} = \frac{1}{\sin(\frac{\pi}{4})}$$

$$\sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$

So cosec
$$\left(\frac{3\pi}{4}\right) = \sqrt{2}$$

 $\frac{3\pi}{4}$ is in the 2nd quadrant, so $\sin \frac{3\pi}{4} = +\sin \frac{\pi}{4}$

Exercise 6A

a sec 300°

b cosec 190°

c cot 110°

d cot 200°

e sec 95°

2 Use your calculator to find, to 3 significant figures, the values of:

a sec 100°

b cosec 260°

c cosec 280°

d cot 550°

 $e \cot \frac{4\pi}{3}$

f sec 2.4 rad

- g cosec $\frac{11\pi}{10}$
- h sec 6 rad

3 Find the exact values (in surd form where appropriate) of the following:

- a cosec 90°
- **b** cot 135°

c sec 180°

d sec 240°

e cosec 300°

 $f \cot(-45^\circ)$

g sec 60°

- h cosec (-210°)
- i sec 225°

 $\mathbf{j} \cot \frac{4\pi}{3}$

 $k \sec \frac{11\pi}{6}$

1 cosec $\left(-\frac{3\pi}{4}\right)$

(P) 4 Prove that $\csc(\pi - x) \equiv \csc x$.

- (P) 5 Show that $\cot 30^{\circ} \sec 30^{\circ} = 2$.
- P 6 Show that $\csc \frac{2\pi}{3} + \sec \frac{2\pi}{3} = a + b\sqrt{3}$ where a and b are real numbers to be found.

Challenge

The point P lies on the unit circle, centre O. The radius OP makes an acute angle of θ with the positive x-axis. The tangent to the circle at P intersects the coordinate axes at points A and B.

Prove that

- a $OB = \sec \theta$
- **b** $OA = \csc \theta$
- c $AP = \cot \theta$

6.2 Graphs of sec x, cosec x and cot x

You can use the graphs of $y = \cos x$, $y = \sin x$ and $y = \tan x$ to sketch the graphs of their reciprocal functions.

Example 3

Sketch, in the interval $-180^{\circ} \le \theta \le 180^{\circ}$, the graph of $y = \sec \theta$.

First draw the graph $y = \cos \theta$.

For each value of θ , the value of sec θ is the reciprocal of the corresponding value of $\cos \theta$.

In particular: $\cos 0^\circ = 1$, so $\sec 0^\circ = 1$; and $\cos 180^\circ = -1$, so $\sec 180^\circ = -1$.

As θ approaches 90° from the left, $\cos\theta$ is +ve but approaches zero, and so $\sec\theta$ is +ve but becomes increasingly large.

At $\theta = 90^{\circ}$, sec θ is undefined and there is a vertical asymptote. This is also true for $\theta = -90^{\circ}$.

As θ approaches 90° from the right, $\cos \theta$ is –ve but approaches zero, and so $\sec \theta$ is –ve but becomes increasingly large negative.

■ The graph of $y = \sec x$, $x \in \mathbb{R}$, has symmetry in the y-axis and has period 360° or 2π radians. It has vertical asymptotes at all the values of x for which $\cos x = 0$.

Notation The domain can also be given as $x \in \mathbb{R}, x \neq \frac{(2n+1)\pi}{2}, n \in \mathbb{Z}$

 $\mathbb Z$ is the symbol used for **integers**, i.e. positive and negative whole numbers including 0.

- The domain of $y=\sec x$ is $x\in\mathbb{R},\,x\neq$ 90°, 270°, 450°,... or any odd multiple of 90°
- In radians the domain is $x \in \mathbb{R}$, $x \neq \frac{\pi}{2}$, $\frac{3\pi}{2}$, $\frac{5\pi}{2}$,... or any odd multiple of $\frac{\pi}{2}$
- The range of $y = \sec x$ is $y \le -1$ or $y \ge 1$
- The graph of $y = \csc x$, $x \in \mathbb{R}$, has period 360° or 2π radians. It has vertical asymptotes at all the values of x for which $\sin x = 0$.

Notation The domain can also be given as $x \in \mathbb{R}$, $x \neq n\pi$, $n \in \mathbb{Z}$.

- The domain of $y=\operatorname{cosec} x$ is $x\in\mathbb{R}$, $x\neq 0^\circ$, 180°, 360°,... or any multiple of 180°
- In radians the domain is $x\in\mathbb{R}$, $x\neq \mathbf{0}$, π , $\mathbf{2}\pi,...$ or any multiple of π
- The range of $y = \operatorname{cosec} x$ is $y \le -1$ or $y \ge 1$
- The graph of $y = \cot x$, $x \in \mathbb{R}$, has period 180° or π radians. It has vertical asymptotes at all the values of x for which $\tan x = 0$.

- The domain of $y = \cot x$ is $x \in \mathbb{R}$, $x \neq 0^{\circ}$, 180°, 360°,... or any multiple of 180°
- **Notation** The domain can also be given as $x \in \mathbb{R}, x \neq n\pi, n \in \mathbb{Z}$.
- In radians the domain is $x \in \mathbb{R}$, $x \neq 0$, π , 2π ,... or any multiple of π
- The range of $y = \cot x$ is $y \in \mathbb{R}$

Example 4

- a Sketch the graph of $y = 4 \csc x$, $-\pi \le x \le \pi$.
- **b** On the same axes, sketch the line y = x.
- c State the number of solutions to the equation $4 \csc x x = 0, -\pi \le x \le \pi$.

 $y = 4 \csc x$ is a stretch of the graph of $y = \csc x$, scale factor 4 in the y-direction. You only need to draw the graph for $-\pi \le x \le \pi$.

 $y = 4 \csc x = x$ $y = 4 \csc x$ and y = x do not intersect for $-\pi \le x \le \pi$ so the equation has no solutions in the given range.

Problem-solving

The solutions to the equation f(x) = g(x) correspond to the points of intersection of the graphs of y = f(x) and y = g(x).

Example 5

Sketch, in the interval $0 \le \theta \le 360^\circ$, the graph of $y = 1 + \sec 2\theta$.

Online Explore transformations of the graphs of reciprocal trigonometric functions using technology.

Step 1 Draw the graph of $y = \sec \theta$.

Exercise

- 1 Sketch, in the interval $-540^{\circ} \le \theta \le 540^{\circ}$, the graphs of:
 - $\mathbf{a} \quad \mathbf{v} = \sec \theta$
- **b** $y = \csc \theta$
- $\mathbf{c} y = \cot \theta$
- **2** a Sketch, on the same set of axes, in the interval $-\pi \le x \le \pi$, the graphs of $y = \cot x$ and y = -x.
 - **b** Deduce the number of solutions of the equation $\cot x + x = 0$ in the interval $-\pi \le x \le \pi$.
- 3 a Sketch, on the same set of axes, in the interval $0 \le \theta \le 360^\circ$, the graphs of $y = \sec \theta$ and $y = -\cos \theta$.
 - **b** Explain how your graphs show that $\sec \theta = -\cos \theta$ has no solutions.
- **4** a Sketch, on the same set of axes, in the interval $0 \le \theta \le 360^\circ$, the graphs of $y = \cot \theta$ and $y = \sin 2\theta$.
 - **b** Deduce the number of solutions of the equation $\cot \theta = \sin 2\theta$ in the interval $0 \le \theta \le 360^{\circ}$.
- 5 a Sketch on separate axes, in the interval $0 \le \theta \le 360^{\circ}$, the graphs of $y = \tan \theta$ and $y = \cot(\theta + 90^{\circ})$.
 - **b** Hence, state a relationship between $\tan \theta$ and $\cot(\theta + 90^\circ)$.

6 a Describe the relationships between the graphs of:

$$\mathbf{i} \ \ y = \tan\left(\theta + \frac{\pi}{2}\right) \text{ and } y = \tan\theta$$

ii
$$y = \cot(-\theta)$$
 and $y = \cot \theta$

iii
$$y = \csc(\theta + \frac{\pi}{4})$$
 and $y = \csc\theta$ iv $y = \sec(\theta - \frac{\pi}{4})$ and $y = \sec\theta$

iv
$$y = \sec(\theta - \frac{\pi}{4})$$
 and $y = \sec \theta$

b By considering the graphs of $y = \tan\left(\theta + \frac{\pi}{2}\right)$, $y = \cot(-\theta)$, $y = \csc\left(\theta + \frac{\pi}{4}\right)$ and $y = \sec\left(\theta - \frac{\pi}{4}\right)$, state which pairs of functions are equal.

7 Sketch on separate axes, in the interval $0 \le \theta \le 360^{\circ}$, the graphs of:

$$\mathbf{a} \ y = \sec 2\theta$$

b
$$y = -\csc \theta$$

$$\mathbf{c} \quad v = 1 + \sec \theta$$

$$\mathbf{d} \ \ y = \csc(\theta - 30^{\circ})$$

e
$$y = 2 \sec (\theta - 60^{\circ})$$

$$\mathbf{f} \quad v = \csc(2\theta + 60^{\circ})$$

$$\mathbf{g} \quad y = -\cot(2\theta)$$

h
$$y = 1 - 2 \sec \theta$$

In each case show the coordinates of any maximum and minimum points, and of any points at which the curve meets the axes.

8 Write down the periods of the following functions. Give your answers in terms of π .

$$\mathbf{a} \sec 3\theta$$

b
$$\csc \frac{1}{2}\theta$$

$$c 2 \cot \theta$$

d
$$sec(-\theta)$$

9 a Sketch, in the interval $-2\pi \le x \le 2\pi$, the graph of $y = 3 + 5 \csc x$.

(3 marks)

b Hence deduce the range of values of k for which the equation $3 + 5 \csc x = k$ has no solutions.

(2 marks)

10 a Sketch the graph of $y = 1 + 2 \sec \theta$ in the interval $-\pi \le \theta \le 2\pi$.

(3 marks)

b Write down the θ -coordinates of points at which the gradient is zero.

(2 marks)

c Deduce the maximum and minimum values of $\frac{1}{1+2\sec\theta}$, and give the smallest positive values of θ at which they occur.

(4 marks)

Using $\sec x$, $\csc x$ and $\cot x$

You need to be able to simplify expressions, prove identities and solve equations involving $\sec x$, cosec x and cot x.

sec x = k and cosec x = k have no solutions for -1 < k < 1.

Example

Simplify:

- $\mathbf{a} \sin \theta \cot \theta \sec \theta$
- **b** $\sin \theta \cos \theta (\sec \theta + \csc \theta)$

 $\mathbf{a} \sin \theta \cot \theta \sec \theta$

$$\equiv \sin\theta \times \frac{\cos\theta}{\sin\theta} \times \frac{1}{\cos\theta}$$

$$\equiv 1$$

b $\sec \theta + \csc \theta \equiv \frac{1}{\cos \theta} + \frac{1}{\sin \theta}$

 $\equiv \frac{\sin\theta + \cos\theta}{\sin\theta\cos\theta}$

So $\sin \theta \cos \theta (\sec \theta + \csc \theta)$

 $= \sin \theta + \cos \theta$

Write the expression in terms of sin and cos,

using
$$\cot \theta \equiv \frac{\cos \theta}{\sin \theta}$$
 and $\sec \theta \equiv \frac{1}{\cos \theta}$

Write the expression in terms of sin and cos,

using
$$\sec \theta \equiv \frac{1}{\cos \theta}$$
 and $\csc \theta \equiv \frac{1}{\sin \theta}$

Put over common denominator.

Multiply both sides by $\sin \theta \cos \theta$.

Example

a Prove that $\frac{\cot \theta \csc \theta}{\sec^2 \theta + \csc^2 \theta} \equiv \cos^3 \theta$.

b Hence explain why the equation $\frac{\cot \theta \csc \theta}{\sec^2 \theta + \csc^2 \theta} = 8$ has no solutions.

a Consider LHS:

The numerator $\cot \theta$ $\csc \theta$

$$\equiv \frac{\cos \theta}{\sin \theta} \times \frac{1}{\sin \theta} \equiv \frac{\cos \theta}{\sin^2 \theta}$$

The denominator $\sec^2\theta + \csc^2\theta$

$$\equiv \frac{1}{\cos^2 \theta} + \frac{1}{\sin^2 \theta} - \frac{1}{\sin^2 \theta}$$

$$\equiv \frac{\sin^2\theta + \cos^2\theta}{\cos^2\theta \sin^2\theta} \quad -$$

$$\equiv \frac{1}{\cos^2\theta \, \sin^2\theta}$$

So
$$\frac{\cot \theta \csc \theta}{\sec^2 \theta + \csc^2 \theta}$$

$$\equiv \left(\frac{\cos \theta}{\sin^2 \theta}\right) \div \left(\frac{1}{\cos^2 \theta \sin^2 \theta}\right)$$

$$\equiv \frac{\cos \theta}{\sin^2 \theta} \times \frac{\cos^2 \theta \sin^2 \theta}{1}$$

$$\equiv \cos^3 \theta$$

b Since $\frac{\cot \theta \csc \theta}{\sec^2 \theta + \csc^2 \theta} \equiv \cos^3 \theta$ we are

required to solve the equation $\cos^3 \theta = 8$. $\cos^3 \theta = 8 \Rightarrow \cos \theta = 2$ which has no solutions since $-1 \le \cos \theta \le 1$.

Write the expression in terms of sin and cos, using $\cot \theta \equiv \frac{\cos \theta}{\sin \theta}$ and $\csc \theta = \frac{1}{\sin \theta}$

Write the expression in terms of sin and cos, using $\sec^2 \theta \equiv \left(\frac{1}{\cos \theta}\right)^2 \equiv \frac{1}{\cos^2 \theta}$ and

$$\csc^2\theta \equiv \frac{1}{\sin^2\theta}$$

Remember that $\sin^2 \theta + \cos^2 \theta \equiv 1$.

Remember to invert the fraction when changing from ÷ sign to ×.

Problem-solving

Write down the equivalent equation, and state the range of possible values for $\cos \theta$.

Example 8

Solve the equations

a $\sec \theta = -2.5$

b $\cot 2\theta = 0.6$

in the interval $0 \le \theta \le 360^{\circ}$.

 $\theta = 113.6^{\circ}, 246.4^{\circ} = 114^{\circ}, 246^{\circ} (3 \text{ s.f.})$

 $b \frac{1}{\tan 2\theta} = 0.6 -$

$$\tan 2\theta = \frac{1}{0.6} = \frac{5}{3}$$

Let $X = 2\theta$, so that you are solving $\tan X = \frac{5}{3}$, in the interval $0 \le X \le 720^\circ$.

 $X = 59.0^{\circ}$, 239.0°, 419.0°, 599.0° 50 $\theta = 29.5^{\circ}$, 120°, 210°, 300° (3 s.f.) Substitute $\frac{1}{\cos \theta}$ for $\sec \theta$ and then simplify to get an equation in the form $\cos \theta = k$.

Sketch the graph of $y = \cos x$ for the given interval. The graph is symmetrical about $\theta = 180^\circ$. Find the principal value using your calculator then subtract this from 360° to find the second solution.

You could also find all the solutions using a CAST diagram. This method is shown for part **b** below.

Calculate angles from the diagram.

Substitute $\frac{1}{\tan 2\theta}$ for $\cot 2\theta$ and then simplify to get an equation in the form $\tan 2\theta = k$.

Draw the CAST diagram, with the acute angle $X = \tan^{-1} \frac{5}{3}$ drawn to the horizontal in the 1st and 3rd quadrants.

Remember that $X = 2\theta$.

Exercise

1 Rewrite the following as powers of $\sec \theta$, $\csc \theta$ or $\cot \theta$.

$$a \frac{1}{\sin^3 \theta}$$

b
$$\frac{4}{\tan^6 \theta}$$

$$c \frac{1}{2\cos^2\theta}$$

$$\mathbf{d} \ \frac{1 - \sin^2 \theta}{\sin^2 \theta}$$

$$e \frac{\sec \theta}{\cos^4 \theta}$$

$$\mathbf{f} \quad \sqrt{\csc^3 \theta \cot \theta \sec \theta}$$

$$g \frac{2}{\sqrt{\tan \theta}}$$

$$\mathbf{h} \frac{\csc^2 \theta \tan^2 \theta}{\cos \theta}$$

2 Write down the value(s) of cot x in each of the following equations.

a
$$5\sin x = 4\cos x$$

b
$$\tan x = -2$$

$$c 3 \frac{\sin x}{\cos x} = \frac{\cos x}{\sin x}$$

3 Using the definitions of sec, cosec, cot and tan simplify the following expressions.

$$\mathbf{a} \sin \theta \cot \theta$$

b
$$\tan \theta \cot \theta$$

c
$$\tan 2\theta \csc 2\theta$$

d
$$\cos \theta \sin \theta (\cot \theta + \tan \theta)$$

$$e \sin^3 x \csc x + \cos^3 x \sec x$$

$$\mathbf{f} \sec A - \sec A \sin^2 A$$

g
$$\sec^2 x \cos^5 x + \cot x \csc x \sin^4 x$$

(P) 4 Prove that:

$$a \cos \theta + \sin \theta \tan \theta \equiv \sec \theta$$

b
$$\cot \theta + \tan \theta \equiv \csc \theta \sec \theta$$

$$\mathbf{c} \quad \csc \theta - \sin \theta \equiv \cos \theta \cot \theta$$

$$\mathbf{d} (1 - \cos x)(1 + \sec x) \equiv \sin x \tan x$$

$$e^{-\frac{\cos x}{1-\sin x}} + \frac{1-\sin x}{\cos x} \equiv 2\sec x$$

$$\mathbf{f} \quad \frac{\cos \theta}{1 + \cot \theta} \equiv \frac{\sin \theta}{1 + \tan \theta}$$

Solve, for values of θ in the interval $0 \le \theta \le 360^{\circ}$, the following equations. Give your answers to 3 significant figures where necessary.

a
$$\sec \theta = \sqrt{2}$$

b
$$\csc \theta = -3$$

$$\mathbf{c} \quad 5\cot\theta = -2$$

d
$$\csc \theta = 2$$

e
$$3 \sec^2 \theta - 4 = 0$$

$$\mathbf{f} \quad 5\cos\theta = 3\cot\theta$$

$$\mathbf{g} \cot^2 \theta - 8 \tan \theta = 0$$

h
$$2\sin\theta = \csc\theta$$

(P) 6 Solve, for values of θ in the interval $-180^{\circ} \le \theta \le 180^{\circ}$, the following equations:

$$\mathbf{a} \operatorname{cosec} \theta = 1$$

b
$$\sec \theta = -3$$

$$c \cot \theta = 3.45$$

d
$$2 \csc^2 \theta - 3 \csc \theta = 0$$

$$e \sec \theta = 2\cos \theta$$

$$\mathbf{f} = 3 \cot \theta = 2 \sin \theta$$

$$\mathbf{g} \operatorname{cosec} 2\theta = 4$$

$$h 2\cot^2\theta - \cot\theta - 5 = 0$$

P Solve the following equations for values of θ in the interval $0 \le \theta \le 2\pi$. Give your answers in terms of π .

$$\mathbf{a} \sec \theta = -1$$

b
$$\cot \theta = -\sqrt{3}$$

$$\mathbf{c} \quad \operatorname{cosec} \frac{1}{2} \theta = \frac{2\sqrt{3}}{3}$$

d
$$\sec \theta = \sqrt{2} \tan \theta \left(\theta \neq \frac{\pi}{2}, \theta \neq \frac{3\pi}{2} \right)$$

/P)

- 8 In the diagram AB = 6 cm is the diameter of the circle and BT is the tangent to the circle at B. The chord AC is extended to meet this tangent at D and $\angle DAB = \theta$.
 - a Show that $CD = 6(\sec \theta \cos \theta)$ cm.

(4 marks)

b Given that CD = 16 cm, calculate the length of the chord AC.

(3 marks)

Problem-solving

AB is the diameter of the circle, so $\angle ACB = 90^{\circ}$.

- /P)
- 9 a Prove that $\frac{\csc x \cot x}{1 \cos x} \equiv \csc x$.

(4 marks)

b Hence solve, in the interval $-\pi \le x \le \pi$, the equation $\frac{\csc x - \cot x}{1 - \cos x} = 2$.

(3 marks)

P 10 a Prove that $\frac{\sin x \tan x}{1 - \cos x} - 1 \equiv \sec x$.

(4 marks)

b Hence explain why the equation $\frac{\sin x \tan x}{1 - \cos x} - 1 = -\frac{1}{2}$ has no solutions.

(1 mark)

P 11 Solve, in the interval $0 \le x \le 360^\circ$, the equation $\frac{1 + \cot x}{1 + \tan x} = 5$.

(8 marks)

Problem-solving

Use the relationship $\cot x = \frac{1}{\tan x}$ to form a quadratic equation in $\tan x$. \leftarrow Year 1, Section 10.5

6.4 Trigonometric identities

You can use the identity $\sin^2 x + \cos^2 x \equiv 1$ to prove the following identities.

- $1 + \tan^2 x \equiv \sec^2 x$
- $1 + \cot^2 x \equiv \csc^2 x$

Link You can use the unit circle definitions of sin and cos to prove the identity $\sin^2 x + \cos^2 x \equiv 1$. \leftarrow **Year 1, Section 10.5**

Example

- a Prove that $1 + \tan^2 x \equiv \sec^2 x$.
- **b** Prove that $1 + \cot^2 x \equiv \csc^2 x$.

a $\sin^2 x + \cos^2 x \equiv 1$ $\frac{\sin^2 x}{\cos^2 x} + \frac{\cos^2 x}{\cos^2 x} \equiv \frac{1}{\cos^2 x}$ $\left(\frac{\sin x}{\cos^2 x}\right)^2 + 1 \equiv \left(\frac{1}{\cos x}\right)^2$ so $1 + \tan^2 x \equiv \sec^2 x$ b $\sin^2 x + \cos^2 x \equiv 1$ $\frac{\sin^2 x}{\sin^2 x} + \frac{\cos^2 x}{\sin^2 x} \equiv \frac{1}{\sin^2 x}$ $1 + \left(\frac{\cos x}{\sin x}\right)^2 \equiv \left(\frac{1}{\sin x}\right)^2$ so $1 + \cot^2 x \equiv \csc^2 x$ Unless otherwise stated, you can assume the identity $\sin^2 x + \cos^2 x \equiv 1$ in proofs involving cosec, sec and cot in your exam.

Divide both sides of the identity by $\cos^2 x$.

Use
$$\tan x \equiv \frac{\sin x}{\cos x}$$
 and $\sec x \equiv \frac{1}{\cos x}$

Divide both sides of the identity by $\sin^2 x$.

Use
$$\cot x \equiv \frac{\cos x}{\sin x}$$
 and $\csc x \equiv \frac{1}{\sin x}$

Example

Given that $\tan A = -\frac{5}{12}$, and that angle A is obtuse, find the exact values of:

a sec A

 $\mathbf{b} \sin A$

$$\tan^2 A = \frac{25}{144}$$

Problem-solving

You are told that A is obtuse. This means it lies in the second quadrant, so $\cos A$ is negative, and $\sec A$ is also negative.

$$\cos A = -\frac{12}{13}, \text{ since } \cos A = \frac{1}{\sec A}$$

Example 11

Prove the identities:

$$\mathbf{a} \ \operatorname{cosec}^4 \theta - \cot^4 \theta \equiv \frac{1 + \cos^2 \theta}{1 - \cos^2 \theta}$$

b
$$\sec^2 \theta - \cos^2 \theta \equiv \sin^2 \theta (1 + \sec^2 \theta)$$

a LHS =
$$cosec^4\theta - cot^4\theta$$

$$\equiv (cosec^2\theta + cot^2\theta)(cosec^2\theta - cot^2\theta)$$

$$\equiv cosec^2\theta + cot^2\theta$$

$$\equiv \frac{1}{\sin^2\theta} + \frac{cos^2\theta}{\sin^2\theta}$$

$$\equiv \frac{1 + cos^2\theta}{1 - cos^2\theta} = RHS$$
b RHS = $\sin^2\theta + \sin^2\theta \sec^2\theta$

$$\equiv \sin^2\theta + \frac{\sin^2\theta}{\cos^2\theta}$$

$$\equiv \sin^2\theta + \tan^2\theta$$

$$\equiv (1 - \cos^2\theta) + (\sec^2\theta - 1)$$

$$\equiv \sec^2\theta - \cos^2\theta$$

$$\equiv LHS$$

This is the difference of two squares, so factorise.

As
$$1 + \cot^2 \theta \equiv \csc^2 \theta$$
, so $\csc^2 \theta - \cot^2 \theta \equiv 1$.

Using cosec
$$\theta \equiv \frac{1}{\sin \theta}$$
, $\cot \theta \equiv \frac{\cos \theta}{\sin \theta}$

Using $\sin^2 \theta + \cos^2 \theta \equiv 1$.

Write in terms of $\sin \theta$ and $\cos \theta$.

Use
$$\sec \theta \equiv \frac{1}{\cos \theta}$$
.

$$\frac{\sin^2 \theta}{\cos^2 \theta} \equiv \left(\frac{\sin \theta}{\cos \theta}\right)^2 \equiv \tan^2 \theta.$$

Look at LHS. It is in terms of $\cos^2 \theta$ and $\sec^2 \theta$, so use $\sin^2 \theta + \cos^2 \theta \equiv 1$ and $1 + \tan^2 \theta \equiv \sec^2 \theta$.

Problem-solving

You can start from either the LHS or the RHS when proving an identity. Try starting with the LHS using $\cos^2 \theta \equiv 1 - \sin^2 \theta$ and $\sec^2 \theta \equiv 1 + \tan^2 \theta$.

Example 12

Solve the equation $4\csc^2\theta - 9 = \cot\theta$, in the interval $0 \le \theta \le 360^\circ$.

The equation can be rewritten as

$$4(1+\cot^2\theta)-9=\cot\theta$$

So
$$4\cot^2\theta - \cot\theta - 5 = 0$$

$$(4\cot\theta - 5)(\cot\theta + 1) = 0$$

So
$$\cot \theta = \frac{5}{4}$$
 or $\cot \theta = -1$

$$\therefore \tan \theta = \frac{4}{5} \text{ or } \tan \theta = -1$$

For $\tan \theta = \frac{4}{5}$

This is a quadratic equation. You need to write it in terms of one trigonometrical function only, so use $1 + \cot^2 \theta = \csc^2 \theta$.

Factorise, or solve using the quadratic formula.

As $\tan \theta$ is +ve, θ is in the 1st and 3rd quadrants. The acute angle to the horizontal is $\tan^{-1}\frac{4}{5} = 38.7^{\circ}$.

If α is the value the calculator gives for $\tan^{-1}\frac{4}{5}$, then the solutions are α and (180° + α).

As $\tan \theta$ is -ve, θ is in the 2nd and 4th quadrants. The acute angle to the horizontal is $tan^{-1} 1 = 45^{\circ}$.

If α is the value the calculator gives for tan⁻¹ (-1), then the solutions are $(180^{\circ} + \alpha)$ and $(360^{\circ} + \alpha)$, as α is not in the given interval.

Online Solve this equation numerically using your calculator.

Exercise

Give answers to 3 significant figures where necessary.

- 1 Simplify each of the following expressions.
 - $\mathbf{a} = 1 + \tan^2 \frac{1}{2}\theta$
- **b** $(\sec \theta 1)(\sec \theta + 1)$
- c $\tan^2\theta(\csc^2\theta 1)$
- **d** $(\sec^2 \theta 1) \cot \theta$ **e** $(\csc^2 \theta \cot^2 \theta)^2$
- $f = 2 \tan^2 \theta + \sec^2 \theta$

- $g \frac{\tan \theta \sec \theta}{1 + \tan^2 \theta}$
- **h** $(1 \sin^2 \theta)(1 + \tan^2 \theta)$

- $i (\sec^4 \theta 2 \sec^2 \theta \tan^2 \theta + \tan^4 \theta)$
- $\mathbf{k} + 4\csc^2 2\theta + 4\csc^2 2\theta \cot^2 2\theta$
- 2 Given that $\csc x = \frac{k}{\csc x}$, where k > 1, find, in terms of k, possible values of $\cot x$.
 - 3 Given that $\cot \theta = -\sqrt{3}$, and that $90^{\circ} < \theta < 180^{\circ}$, find the exact values of:
 - $\mathbf{a} \sin \theta$
- $\mathbf{b} \cos \theta$
- 4 Given that $\tan \theta = \frac{3}{4}$, and that $180^{\circ} < \theta < 270^{\circ}$, find the exact values of:
 - $\mathbf{a} \sec \theta$
- $\mathbf{b} \cos \theta$
- $c \sin \theta$
- 5 Given that $\cos \theta = \frac{24}{25}$, and that θ is a reflex angle, find the exact values of:
 - $\mathbf{a} \tan \theta$
- **b** cosec θ

- (P) 6 Prove the following identities.
 - $\mathbf{a} \sec^4 \theta \tan^4 \theta \equiv \sec^2 \theta + \tan^2 \theta$
 - $\operatorname{c} \sec^2 A(\cot^2 A \cos^2 A) \equiv \cot^2 A$
 - $\frac{1 \tan^2 A}{1 + \tan^2 A} \equiv 1 2\sin^2 A$
 - $\mathbf{g} \operatorname{cosec} A \operatorname{sec}^2 A \equiv \operatorname{cosec} A + \tan A \operatorname{sec} A$
- **b** $\csc^2 x \sin^2 x \equiv \cot^2 x + \cos^2 x$
- $\mathbf{d} \quad 1 \cos^2 \theta \equiv (\sec^2 \theta 1)(1 \sin^2 \theta)$
- $\mathbf{f} \sec^2 \theta + \csc^2 \theta \equiv \sec^2 \theta \csc^2 \theta$
- **h** $(\sec \theta \sin \theta)(\sec \theta + \sin \theta) \equiv \tan^2 \theta + \cos^2 \theta$
- 7 Given that $3 \tan^2 \theta + 4 \sec^2 \theta = 5$, and that θ is obtuse, find the exact value of $\sin \theta$.
- 8 Solve the following equations in the given intervals.
 - $a \sec^2 \theta = 3 \tan \theta, 0 \le \theta \le 360^\circ$

- **b** $\tan^2 \theta 2 \sec \theta + 1 = 0, -\pi \le \theta \le \pi$
- c $\csc^2 \theta + 1 = 3 \cot \theta$, $-180^\circ \le \theta \le 180^\circ$
- **d** $\cot \theta = 1 \csc^2 \theta$, $0 \le \theta \le 2\pi$
- **e** $3 \sec \frac{1}{2}\theta = 2 \tan^2 \frac{1}{2}\theta$, $0 \le \theta \le 360^\circ$
- $\mathbf{f} (\sec \theta \cos \theta)^2 = \tan \theta \sin^2 \theta, \ 0 \le \theta \le \pi$
- $g \tan^2 2\theta = \sec 2\theta 1, 0 \le \theta \le 180^\circ$
- **h** $\sec^2 \theta (1 + \sqrt{3}) \tan \theta + \sqrt{3} = 1, 0 \le \theta \le 2\pi$

- 9 Given that $\tan^2 k = 2 \sec k$,
 - a find the value of $\sec k$

(4 marks)

b deduce that $\cos k = \sqrt{2} - 1$.

- (2 marks)
- c Hence solve, in the interval $0 \le k \le 360^\circ$, $\tan^2 k = 2 \sec k$, giving your answers to 1 decimal place.
- (3 marks)

- 10 Given that $a = 4 \sec x$, $b = \cos x$ and $c = \cot x$,
 - \mathbf{a} express b in terms of a

(2 marks)

b show that $c^2 = \frac{16}{a^2 - 16}$

(3 marks)

- 11 Given that $x = \sec \theta + \tan \theta$,
 - **a** show that $\frac{1}{x} = \sec \theta \tan \theta$.

(3 marks)

b Hence express $x^2 + \frac{1}{x^2} + 2$ in terms of θ , in its simplest form.

- (5 marks)
- 12 Given that $2\sec^2\theta \tan^2\theta = p$ show that $\csc^2\theta = \frac{p-1}{p-2}, p \neq 2$. (5 marks)

6.5 Inverse trigonometric functions

You need to understand and use the inverse trigonometric functions $\arcsin x$, $\arccos x$ and $\arctan x$ and their graphs.

■ The inverse function of sin x is called arcsin x.

Hint The sin-1 function on your calculator will give principal values in the same range as arcsin.

- The domain of $y = \arcsin x$ is $-1 \le x \le 1$.
- The range of $y = \arcsin x$ is $-\frac{\pi}{2} \le \arcsin x \le \frac{\pi}{2}$ or $-90^{\circ} \le \arcsin x \le 90^{\circ}$.

Example 13

Sketch the graph of $y = \arcsin x$.

 $y = \sin x, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$ $y = \sin x$ $y = \arcsin x$

Step 1

Draw the graph of $y = \sin x$, with the restricted domain of $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$

Restricting the domain ensures that the inverse function exists since $y = \sin x$ is a **one-to-one** function for the restricted domain. Only one-to-one functions have inverses. \leftarrow Section 2.3

Step 2

Reflect in the line y = x.

The domain of $\arcsin x$ is $-1 \le x \le 1$; the range is $-\frac{\pi}{2} \le \arcsin x \le \frac{\pi}{2}$

Remember that the x and y coordinates of points interchange when reflecting in y = x. For example:

$$\left(\frac{\pi}{2}, 1\right) \rightarrow \left(1, \frac{\pi}{2}\right)$$

■ The inverse function of cos x is called arccos x.

- The domain of $y = \arccos x$ is $-1 \le x \le 1$.
- The range of $y = \arccos x$ is $0 \le \arccos x \le \pi$ or $0^{\circ} \le \arccos x \le 180^{\circ}$.
- The inverse function of tan x is called arctan x.

Watch out Unlike arcsin x and $\arccos x$, the function $\arctan x$ is defined for all real values of x.

- The domain of $y = \arctan x$ is $x \in \mathbb{R}$.
- The range of $y = \arctan x$ is $-\frac{\pi}{2} < \arctan x < \frac{\pi}{2}$ or $-90^{\circ} < \arctan x < 90^{\circ}$.

Example

Work out, in radians, the values of:

- **a** $\arcsin\left(-\frac{\sqrt{2}}{2}\right)$ **b** $\arccos(-1)$ **c** $\arctan(\sqrt{3})$

You need to solve, in the interval $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, the equation $\sin x = -\frac{\sqrt{2}}{2}$.

The angle to the horizontal is $\frac{\pi}{4}$ and, as sin is –ve, it is in the 4th quadrant.

Online Use your calculator to evaluate inverse trigonometric functions in radians.

equation $\cos x = -1$.

You need to solve, in the interval $0 \le x \le \pi$, the

Draw the graph of $y = \cos x$.

C

You need to solve, in the interval $-\frac{\pi}{2} < x < \frac{\pi}{2}$, the equation $\tan x = \sqrt{3}$.

The angle to the horizontal is $\frac{\pi}{3}$ and, as tan is +ve, it is in the 1st quadrant.

You can verify these results using the sin-1, cos-1 and tan-1 functions on your calculator.

Exercise

In this exercise, all angles are given in radians.

1 Without using a calculator, work out, giving your answer in terms of π :

- a arccos(0)
- **b** arcsin(1)
- c arctan(-1)
- **d** $\arcsin(-\frac{1}{2})$
- e $\arcsin\left(-\frac{1}{\sqrt{2}}\right)$ f $\arctan\left(-\frac{1}{\sqrt{3}}\right)$ g $\arcsin\left(\sin\frac{\pi}{3}\right)$ h $\arcsin\left(\sin\frac{2\pi}{3}\right)$

2 Find:

- **a** $\arcsin(\frac{1}{2}) + \arcsin(-\frac{1}{2})$ **b** $\arccos(\frac{1}{2}) \arccos(-\frac{1}{2})$ **c** $\arctan(1) \arctan(-1)$

3 Without using a calculator, work out the values of:

a $\sin(\arcsin\frac{1}{2})$

- **b** $\sin(\arcsin(-\frac{1}{2}))$
- $c \tan(\arctan(-1))$
- d cos(arccos 0)

4 Without using a calculator, work out the exact values of:

 $\mathbf{a} \sin(\arccos(\frac{1}{2}))$

- **b** $\cos(\arcsin(-\frac{1}{2}))$
- c $\tan\left(\arccos\left(-\frac{\sqrt{2}}{2}\right)\right)$

d $sec(arctan(\sqrt{3}))$

- e cosec(arcsin(-1))
- $\mathbf{f} \sin \left(2\arcsin\left(\frac{\sqrt{2}}{2}\right) \right)$

- P
- 5 Given that $\arcsin k = \alpha$, where 0 < k < 1 and α is in radians, write down, in terms of α , the first two positive values of x satisfying the equation $\sin x = k$.
- /P)
- 6 Given that x satisfies $\arcsin x = k$, where $0 < k < \frac{\pi}{2}$,
 - \mathbf{a} state the range of possible values of x

(1 mark)

- **b** express, in terms of x,
 - $i \cos k$
- ii tan k

(4 marks)

- Given, instead, that $-\frac{\pi}{2} < k < 0$,
- c how, if at all, are your answers to part b affected?

(2 marks)

- P) 7 Sketch the graphs of:
 - $\mathbf{a} \quad y = \frac{\pi}{2} + 2 \arcsin x$
- **b** $y = \pi \arctan x$
- $\mathbf{c} \quad y = \arccos(2x+1)$
- **d** $y = -2 \arcsin(-x)$

- /P)
- 8 The function f is defined as $f: x \mapsto \arcsin x$, $-1 \le x \le 1$, and the function g is such that g(x) = f(2x).
 - a Sketch the graph of y = f(x) and state the range of f.

(3 marks)

b Sketch the graph of y = g(x).

(2 marks)

c Define g in the form g: $x \mapsto \dots$ and give the domain of g.

(3 marks)

d Define g^{-1} in the form g^{-1} : $x \mapsto ...$

(2 marks)

- /P)
- **9** a Prove that for $0 \le x \le 1$, $\arccos x = \arcsin \sqrt{1 x^2}$

(4 marks)

b Give a reason why this result is not true for $-1 \le x \le 0$.

(2 marks)

Challenge

a Sketch the graph of $y = \sec x$, with the restricted domain

$$0 \le x \le \pi, x \ne \frac{\pi}{2}$$

b Given that arcsec x is the inverse function of $\sec x$, $0 \le x \le \pi$, $x \ne \frac{\pi}{2}$, sketch the graph of $y = \operatorname{arcsec} x$ and state the range of $\operatorname{arcsec} x$.

(E/P

Mixed exercise 6

Give any non-exact answers to equations to 1 decimal place.

1 Solve $\tan x = 2 \cot x$, in the interval $-180^{\circ} \le x \le 90^{\circ}$. (4 marks) (E/P)

3 Given that $p = \sin \theta$ and $q = 4 \cot \theta$, show that $p^2q^2 = 16(1 - p^2)$. (4 marks)

(4 marks)

(3 marks)

ii $2 \cot^2 \theta = 7 \csc \theta - 8$ i $\csc \theta = 2 \cot \theta$

2 Given that $p = 2 \sec \theta$ and $q = 4 \cos \theta$, express p in terms of q.

b Solve, in the interval $0 \le \theta \le 360^\circ$,

 $i \sec(2\theta - 15^\circ) = \csc 135^\circ$ ii $\sec^2 \theta + \tan \theta = 3$

c Solve, in the interval $0 \le x \le 2\pi$, ii $\sec^2 x = \frac{4}{3}$ i $\csc\left(x + \frac{\pi}{15}\right) = -\sqrt{2}$

4 a Solve, in the interval $0 < \theta < 180^{\circ}$,

5 Given that $5 \sin x \cos y + 4 \cos x \sin y = 0$, and that $\cot x = 2$, find the value of $\cot y$.

6 Prove that: **b** $\frac{\csc x}{\csc x - \sin x} \equiv \sec^2 x$ $\mathbf{a} (\tan \theta + \cot \theta)(\sin \theta + \cos \theta) \equiv \sec \theta + \csc \theta$

 $\mathbf{d} \frac{\cot x}{\csc x - 1} - \frac{\cos x}{1 + \sin x} \equiv 2 \tan x$ c $(1 - \sin x)(1 + \csc x) \equiv \cos x \cot x$

 $\mathbf{f} \frac{(\sec \theta - \tan \theta)(\sec \theta + \tan \theta)}{1 + \tan^2 \theta} \equiv \cos^2 \theta$ $e^{-\frac{1}{\cos \cot \theta - 1} + \frac{1}{\csc \theta + 1}} \equiv 2 \sec \theta \tan \theta$

[E/P] 7 a Prove that $\frac{\sin x}{1 + \cos x} + \frac{1 + \cos x}{\sin x} \equiv 2 \csc x$. (4 marks)

b Hence solve, in the interval $-2\pi \le x \le 2\pi$, $\frac{\sin x}{1 + \cos x} + \frac{1 + \cos x}{\sin x} = -\frac{4}{\sqrt{2}}$ (4 marks)

8 Prove that $\frac{1+\cos\theta}{1-\cos\theta} \equiv (\csc\theta + \cot\theta)^2$ (4 marks)

9 Given that $\sec A = -3$, where $\frac{\pi}{2} < A < \pi$,

a calculate the exact value of tan A

b show that cosec $A = \frac{3\sqrt{2}}{4}$ (3 marks)

10 Given that $\sec \theta = k$, $|k| \ge 1$, and that θ is obtuse, express in terms of k:

d cosec θ **b** $\tan^2 \theta$ $c \cot \theta$ $a \cos \theta$

11 Solve, in the interval $0 \le x \le 2\pi$, the equation $\sec\left(x + \frac{\pi}{4}\right) = 2$, giving your answers in terms of π . (5 marks)

12 Find, in terms of π , the value of $\arcsin(\frac{1}{2}) - \arcsin(-\frac{1}{2})$.

(4 marks)

13 Solve, in the interval $0 \le x \le 2\pi$, the equation $\sec^2 x - \frac{2\sqrt{3}}{3} \tan x - 2 = 0$, giving your answers in terms of π .

(5 marks)

E/P) 14 a Factorise $\sec x \csc x - 2 \sec x - \csc x + 2$.

(2 marks)

b Hence solve $\sec x \csc x - 2 \sec x - \csc x + 2 = 0$, in the interval $0 \le x \le 360^\circ$.

(4 marks)

15 Given that $\arctan(x-2) = -\frac{\pi}{3}$, find the value of x.

(3 marks)

16 On the same set of axes sketch the graphs of $y = \cos x$, $0 \le x \le \pi$, and $y = \arccos x$,

(4 marks)

[P] 17 a Given that $\sec x + \tan x = -3$, use the identity $1 + \tan^2 x = \sec^2 x$ to find the value

 $-1 \le x \le 1$, showing the coordinates of points at which the curves meet the axes.

(3 marks)

b Deduce the values of:

of $\sec x - \tan x$.

i sec x

(3 marks)

c Hence solve, in the interval $-180^{\circ} \le x \le 180^{\circ}$, $\sec x + \tan x = -3$.

(3 marks)

18 Given that $p = \sec \theta - \tan \theta$ and $q = \sec \theta + \tan \theta$, show that $p = \frac{1}{q}$

(4 marks)

19 a Prove that $\sec^4 \theta - \tan^4 \theta = \sec^2 \theta + \tan^2 \theta$.

ii tan x

(3 marks)

b Hence solve, in the interval $-180^{\circ} \le \theta \le 180^{\circ}$, $\sec^4 \theta = \tan^4 \theta + 3 \tan \theta$.

(4 marks)

- **20** a Sketch the graph of $y = \sin x$ and shade in the area representing $\int_0^{\frac{\pi}{2}} \sin x \, dx$.
 - **b** Sketch the graph of $y = \arcsin x$ and shade in the area representing $\int_0^1 \arcsin x \, dx$.
 - c By considering the shaded areas explain why $\int_0^{\frac{\pi}{2}} \sin x \, dx + \int_0^1 \arcsin x \, dx = \frac{\pi}{2}$
- P 21 Show that $\cot 60^{\circ} \sec 60^{\circ} = \frac{2\sqrt{3}}{3}$
- P) 22 a Sketch, in the interval $-2\pi \le x \le 2\pi$, the graph of $y = 2 3 \sec x$. (3 marks)
 - **b** Hence deduce the range of values of k for which the equation $2 3 \sec x = k$ has no solutions.

(2 marks)

- P 23 a Sketch the graph of $y = 3 \arcsin x \frac{\pi}{2}$, showing clearly the exact coordinates of the end-points of the curve.
- (4 marks) (3 marks)
- **b** Find the exact coordinates of the point where the curve crosses the x-axis.

- **24** a Prove that for $0 < x \le 1$, $\arccos x = \arctan \frac{\sqrt{1 x^2}}{x}$
 - **b** Prove that for $-1 \le x < 0$, $\arccos x = k + \arctan \frac{\sqrt{1 x^2}}{x}$, where k is a constant to be found.

Summary of key points

- 1 $\sec x = \frac{1}{\cos x}$ (undefined for values of x for which $\cos x = 0$)
 - cosec $x = \frac{1}{\sin x}$ (undefined for values of x for which $\sin x = 0$)
 - $\cot x = \frac{1}{\tan x}$ (undefined for values of x for which $\tan x = 0$)
 - $\cot x = \frac{\cos x}{\sin x}$
- **2** The graph of $y = \sec x$, $x \in \mathbb{R}$, has symmetry in the y-axis and has period 360° or 2π radians. It has vertical asymptotes at all the values of x for which $\cos x = 0$.

- The domain of $y = \sec x$ is $x \in \mathbb{R}$, $x \neq 90^{\circ}$, 270°, 450°, ... or any odd multiple of 90°.
- In radians the domain is $x \in \mathbb{R}$, $x \neq \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \dots$ or any odd multiple of $\frac{\pi}{2}$
 - The range of $y = \sec x$ is $y \le -1$ or $y \ge 1$.
- **3** The graph of $y = \csc x$, $x \in \mathbb{R}$, has period 360° or 2π radians. It has vertical asymptotes at all the values of x for which $\sin x = 0$.

- The domain of $y = \operatorname{cosec} x$ is $x \in \mathbb{R}$, $x \neq 0^{\circ}$, 180°, 360°, ... or any multiple of 180°.
- In radians the domain is $x \in \mathbb{R}$, $x \neq 0$, π , 2π , ... or any multiple of π
- The range of $y = \csc x$ is $y \le -1$ or $y \ge 1$.

4 The graph of $y = \cot x$, $x \in \mathbb{R}$, has period 180° or π radians. It has vertical asymptotes at all the values of x for which $\tan x = 0$.

- The domain of $y = \cot x$ is $x \in \mathbb{R}$, $x \neq 0^\circ$, 180°, 360°, ... or any multiple of 180°.
- In radians the domain is $x \in \mathbb{R}$, $x \neq 0$, π , 2π , ... or any multiple of π .
- The range of $y = \cot x$ is $y \in \mathbb{R}$.

- **5** $\sec x = k$ and $\csc x = k$ have no solutions for -1 < k < 1.
- **6** You can use the identity $\sin^2 x + \cos^2 x \equiv 1$ to prove the following identities:
 - $1 + \tan^2 x \equiv \sec^2 x$
 - $1 + \cot^2 x \equiv \csc^2 x$
- **7** The inverse function of $\sin x$ is called **arcsin** x.
 - The domain of $y = \arcsin x$ is $-1 \le x \le 1$
 - The range of $y = \arcsin x$ is $-\frac{\pi}{2} \le \arcsin x \le \frac{\pi}{2}$ or $-90^{\circ} \le \arcsin x \le 90^{\circ}$

- **8** The inverse function of $\cos x$ is called **arccos** x.
 - The domain of $y = \arccos x$ is $-1 \le x \le 1$
 - The range of $y = \arccos x$ is $0 \le \arccos x \le \pi$ or $0^{\circ} \le \arccos x \le 180^{\circ}$

- **9** The inverse function of $\tan x$ is called **arctan** x.
 - The domain of $y = \arctan x$ is $x \in \mathbb{R}$
 - The range of $y = \arctan x$ is $-\frac{\pi}{2} < \arctan x < \frac{\pi}{2}$ or $-90^{\circ} < \arctan x < 90^{\circ}$

