Review exercise

- 1 Prove by contradiction that there are infinitely many prime numbers. (4)

← Section 1.1

- 2 Prove that the equation $x^2 2 = 0$ has no rational solutions.

You may assume that if n^2 is an even integer then n is also an even integer.

← Section 1.1

- (E) 3 Express $\frac{4x}{x^2-2x-3} + \frac{1}{x^2+x}$ as a single fraction in its simplest form. (4)

← Section 1.2

- P 4 $f(x) = 1 \frac{3}{x+2} + \frac{3}{(x+2)^2}, x \neq -2$
 - a Show that $f(x) = \frac{x^2 + x + 1}{(x + 2)^2}, x \neq -2.$
 - **b** Show that $x^2 + x + 1 > 0$ for all values of $x, x \neq -2$.
 - c Show that f(x) > 0 for all values of x, $x \neq -2$.

- 5 Show that $\frac{2x-1}{(x-1)(2x-3)}$ can be written in the form $\frac{A}{x-1} + \frac{B}{2x-3}$ where A and

B are constants to be found.

← Section 1.3

6 Given that

$$\frac{3x+7}{(x+1)(x+2)(x+3)} \equiv \frac{P}{x+1} + \frac{Q}{x+2} + \frac{R}{x+3}$$
where P , Q and R are constants, find the values of P , Q and R . (4)

← Section 1.3

(E) 7
$$f(x) = \frac{2}{(2-x)(1+x)^2}, x \neq -1, x \neq 2$$
.

Find the values of A, B and C such that

$$f(x) = \frac{A}{2-x} + \frac{B}{1+x} + \frac{C}{(1+x)^2}$$
 (4)

← Section 1.4

$$8 \frac{14x^2 + 13x + 2}{(x+1)(2x+1)^2}$$
A
B

 $\equiv \frac{A}{x+1} + \frac{B}{2x+1} + \frac{C}{(2x+1)^2}$

Find the values of the constants A, B

- (E) 9 Given that $\frac{3x^2 + 6x 2}{x^2 + 4} = d + \frac{ex + f}{x^2 + 4}$

find the values of d, e and f.

← Section 1.5

(4)

(E) 10 $p(x) = \frac{9-3x-12x^2}{(1-x)(1+2x)}$

Show that p(x) can be written in the form

 $A + \frac{B}{1-y} + \frac{C}{1+2y}$, where A, B and C are constants to be found. (4)

← Sections 1.3, 1.5

- - 11 Solve the inequality |4x + 3| > 7 2x. (3)

← Section 2.1

12 The function p(x) is defined by

$$p:x \mapsto \begin{cases} 4x + 5, x < -2 \\ -x^2 + 4, x \ge -2 \end{cases}$$

- a Sketch p(x), stating its range.
- **b** Find the exact values of a such that p(a) = -20. (4)

← Section 2.2

(3)

E/P

13 The functions p and q are defined by

$$p(x) = \frac{1}{x+4}, x \in \mathbb{R}, x \neq -4$$

$$q(x) = 2x - 5, x \in \mathbb{R}$$

a Find an expression for qp(x) in the

form
$$\frac{ax+b}{cx+d}$$
 (3)

b Solve qp(x) = 15. (3)

Let r(x) = qp(x).

c Find $r^{-1}(x)$, stating its domain. (3)

← Section 2.3

E/P)

14 The functions f and g are defined by:

$$f: x \mapsto \frac{x+2}{x}, x \in \mathbb{R}, x \neq 0$$

 $g: x \mapsto \ln(2x - 5), x \in \mathbb{R}, x > \frac{5}{2}$

b Show that
$$f^2(x) = \frac{3x+2}{x+2}$$
 (3)

c Find the exact value of gf $(\frac{1}{4})$.

(2)

d Find $g^{-1}(x)$, stating its domain. (3)

omam. (5

← Section 2.3, 2.4

E/P)

15 The functions p and q are defined by:

$$p(x) = 3x + b, x \in \mathbb{R}$$

$$q(x) = 1 - 2x, x \in \mathbb{R}$$

Given that pq(x) = qp(x),

$$\mathbf{a} \text{ show that } b = -\frac{2}{3} \tag{3}$$

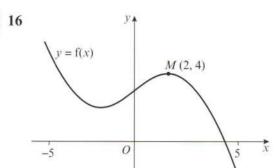
b find
$$p^{-1}(x)$$
 and $q^{-1}(x)$ (3)

c show that

$$p^{-1}q^{-1}(x) = q^{-1}p^{-1}(x) = \frac{ax+b}{c}$$
, where a,
b and c are integers to be found. (4)

← Section 2.3, 2.4

(E)



The figure shows the graph of

$$y = f(x), -5 \le x \le 5$$

The point M(2, 4) is the maximum turning point of the graph.

Sketch, on separate diagrams, the graphs of:

$$\mathbf{a} \ \ y = \mathbf{f}(x) + 3$$
 (2)

$$\mathbf{b} \quad y = |\mathbf{f}(x)| \tag{2}$$

$$\mathbf{c} \quad y = \mathbf{f}(|x|) \tag{2}$$

Show on each graph the coordinates of any maximum turning points.

← Sections 2.5, 2.6

E/P)

17 The function h is defined by h: $x \mapsto 2(x+3)^2 - 8, x \in \mathbb{R}$

- a Draw a sketch of y = h(x), labelling the turning points and the x- and y-intercepts.
- **b** Write down the coordinates of the turning points on the graphs with equations:

$$\mathbf{i} \ \ y = 3\mathbf{h}(x+2) \tag{2}$$

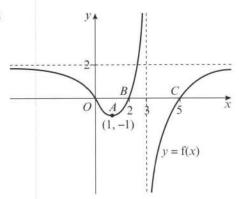
$$ii \quad y = h(-x) \tag{2}$$

$$iii y = |h(x)|$$
 (2)

c Sketch the curve with equation y = h(-|x|). On your sketch show the coordinates of all turning points and all x- and y-intercepts. (4)

← Sections 2.5, 2.6

E) 18



The diagram shows a sketch of the graph of y = f(x).

The curve has a minimum at the point A(1, -1), passes through x-axis at the origin, and the points B(2, 0) and C(5, 0); the asymptotes have equations x = 3 and y = 2.

a Sketch, on separate axes, the graphs of:

$$\mathbf{i} \ y = |\mathbf{f}(x)| \tag{2}$$

$$\mathbf{ii} \ y = -\mathbf{f}(x+1) \tag{2}$$

$$\mathbf{iii} \ y = \mathbf{f}(-2x) \tag{2}$$

in each case, showing the images of the points A, B and C.

b State the number of solutions to each equation.

i
$$3|f(x)| = 2$$
 (2)

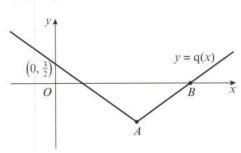
ii
$$2|f(x)| = 3$$
.

← Sections 2.6, 2.7

E/P

19 The diagram shows a sketch of part of the graph y = q(x), where

$$q(x) = \frac{1}{2}|x+b| - 3, b < 0$$



The graph cuts the y-axis at $(0, \frac{3}{2})$.

a Find the value of b.

b Find the coordinates of A and B.

c Solve
$$q(x) = -\frac{1}{3}x + 5$$
.

← Section 2.7

(3)

(5)

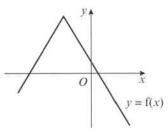
(1)

(E/P)

20 The function f is defined by

$$f(x) = -\frac{5}{3}|x+4| + 8, \ x \in \mathbb{R}$$

The diagram shows a sketch of the graph y = f(x).



- a State the range of f.
- **b** Give a reason why $f^{-1}(x)$ does not exist. (1)
- c Solve the inequality $f(x) > \frac{2}{3}x + 4$. (5)
- **d** State the range of values of k for which the equation $f(x) = \frac{5}{3}x + k$ has no solutions. (2)

← Section 2.7

E/P

(2)

21 The 4th, 5th and 6th terms in an arithmetic sequence are:

$$12 - 7k$$
, $3k^2$, $k^2 - 10k$

a Find two possible values of k.

Given that the sequence contains only integer terms,

b find the first term and the common difference. (2)

← Section 3.1

E

(2)

22 The 4th term of an arithmetic sequence is 72. The 11th term is 51. The sum of the first *n* terms is 1125.

a Show that $3n^2 - 165n + 2250 = 0$.

(4)

(3)

b Find the two possible values for n.

(2)

← Section 3.2

- E/P)
- 23 a Find, in terms of p, the 30th term of the arithmetic sequence
 (19p 18), (17p 8), (15p + 2), ...
 giving your answer in its simplest form.
 - (2)

(3)

- **b** Given $S_{31} = 0$, find the value of p.
 - ← Sections 3.1, 3.2

- E/P
- 24 The second term of a geometric sequence is 256. The eighth term of the same sequence is 900. The common ratio is r, r > 0.
 - a Show that r satisfies the equation

$$6\ln r + \ln\left(\frac{64}{225}\right) = 0 {3}$$

- **b** Find the value of r correct to 3 significant figures. (3)
 - ← Section 3.3

- E/P
- 25 The first three terms of a geometric sequence are $10, \frac{50}{6}$ and $\frac{250}{36}$.
 - a Find the sum to infinity of the series.

(3)

Given that the sum to *k* terms of the series is greater than 55,

- **b** show that $k > \frac{\log\left(\frac{1}{12}\right)}{\log\left(\frac{5}{6}\right)}$ (4)
- \mathbf{c} find the smallest possible value of k. (1)
 - ← Sections 3.4, 3.5

E/P

- **26** A geometric series has first term 4 and common ratio *r*. The sum of the first three terms of the series is 7.
 - a Show that $4r^2 + 4r 3 = 0$. (3)
 - **b** Find the two possible values of r. (2) Given that r is positive,
 - c find the sum to infinity of the series. (2)
 - ← Sections 3.4, 3.5

E/P)

27 The fourth, fifth and sixth terms of a geometric series are x, 3 and x + 8.

a Find the two possible values of x
 and the corresponding values of the
 common ratio. (4)

Given that the sum to infinity of the series exists,

- **b** find the first term
- c find the sum to infinity of the series. (2)
 - ← Sections 3.3, 3.5

(1)

E/P

28 A sequence a_1, a_2, a_3, \dots is defined by $a_1 = k$,

$$a_{n+1}=3a_n+5, n\geq 1$$

where k is a positive integer.

- a Write down an expression for a_2 in terms of k. (1)
- **b** Show that $a_3 = 9k + 20$. (2)
- **c** i Find $\sum_{r=1}^{4} a_r$ in terms of k. (2)
 - ii Show that $\sum_{r=1}^{4} a_r$ is divisible by 10. (2)

- 29 At the end of year 1, a company employs 2400 people. A model predicts that the number of employees will increase by 6% each year, forming a geometric sequence.
 - a Find the predicted number of employees after 4 years, giving your answer to the nearest 10. (3)

The company expects to expand in this way until the total number of employees first exceeds 6000 at the end of a year, N.

- **b** Show that $(N-1)\log 1.06 > \log 2.5$ (3)
- c Find the value of N. (2)

The company has a charity scheme whereby they match any employee charity contribution exactly.

d Given that the average employee charity contribution is £5 each year, find the total charity donation over the 10-year period from the end of year 1 to the end of year 10. Give your answer to the nearest £1000. (3)

← Section 3.8

30 A geometric series is given by $6 - 24x + 96x^2 - \dots$

The series is convergent.

a Write down a condition on x. (1)

Given that $\sum_{r=1}^{\infty} 6 \times (-4x)^{r-1} = \frac{24}{5}$

b Calculate the value of x. (5)

← Sections 3.5, 3.6

- **(E)** 31 $g(x) = \frac{1}{\sqrt{1-x}}$
 - a Show that the series expansion of g(x)up to and including the x^3 term is

 $1 + \frac{x}{2} + \frac{3x^2}{8} + \frac{5x^3}{16}$ (5)

b State the range of values of x for which the expansion is valid.

← Section 4.1

- 32 When $(1 + ax)^n$ is expanded as a series in ascending powers of x, the coefficients of x and x^2 are -6 and 45 respectively.
 - **a** Find the value of a and the value of n.
 - **b** Find the coefficient of x^3 .
 - c Find the set of values of x for which the expansion is valid.

← Section 4.1

- 33 a Find the binomial expansion of $(1+4x)^{\frac{2}{3}}$ in ascending powers of x up to and including the x^3 term, simplifying each term. (4)
 - **b** Show that, when $x = \frac{3}{100}$, the exact

value of $(1 + 4x)^{\frac{3}{2}}$ is $\frac{112\sqrt{112}}{1000}$

c Substitute $x = \frac{3}{100}$ into the binomial

expansion in part a and hence obtain an approximation to \$\sqrt{112}\$. Give your answer to 5 decimal places. (3)

d Calculate the percentage error in your estimate to 5 decimal places.

← Section 4.1

34 $f(x) = (1+x)(3+2x)^{-3}, |x| < \frac{3}{2}$

Find the binomial expansion of f(x)in ascending powers of x, up to and including the term in x^3 . Give each coefficient as a simplified fraction.

← Section 4.2

(5)

35 $h(x) = \sqrt{4-9x}, |x| < \frac{4}{9}$

- a Find the series expansion of h(x), in ascending powers of x, up to and including the x^2 term. Simplify each (4)
- **b** Show that, when $x = \frac{1}{100}$, the exact value of h(x) is $\frac{\sqrt{391}}{10}$ (2)
- c Use the series expansion in part a to estimate the value of $h(\frac{1}{100})$ and state the degree of accuracy of your approximation. (3)

← Section 4.2

36 Given that $(a + bx)^{-2}$ has binomial expansion $\frac{1}{4} + \frac{1}{4}x + cx^2 + \dots$

> a Find the values of the constants a, b and c. (4)

b Find the coefficient of the x^3 term in the expansion. (2)

← Section 4.2

37 $g(x) = \frac{3+5x}{(1+3x)(1-x)}, |x| < \frac{1}{3}$

Given that g(x) can be expressed in the form $g(x) = \frac{A}{1+3x} + \frac{B}{1-x}$

- a find the values of A and B.
- b Hence, or otherwise, find the series expansion of f(x), in ascending powers of x, up to and including the x^2 term. Simplify each term. (6)

← Sections 4.1, 4.3

(3)

E/P 38 $\frac{3x-1}{(1-2x)^2} = \frac{A}{1-2x} + \frac{B}{(1-2x)^2}, |x| < \frac{1}{2}$

- a Find the values of A and B.
- **b** Hence, or otherwise, expand $\frac{3x-1}{(1-2x)^2}$ in ascending powers of x, as far as the term in x^3 . Give each coefficient as a simplified fraction.

← Sections 4.1, 4.3

39 $f(x) = \frac{25}{(3+2x)^2(1-x)}, |x| < 1$

f(x) can be expressed in the form

$$\frac{A}{3+2x} + \frac{B}{(3+2x)^2} + \frac{C}{1-x}$$

- a Find the values of A, B and C. (4)
- b Hence, or otherwise, find the series expansion of f(x), in ascending powers of x, up to and including the term in x^2 . Simplify each term.

← Sections 4.1, 4.2, 4.3

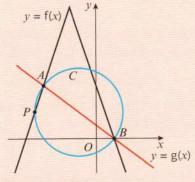
40 $\frac{4x^2 + 30x + 31}{(x+4)(2x+3)} = A + \frac{B}{x+4} + \frac{C}{2x+3}$

- a Find the values of the constants A, B (4) and C.
- b Hence, or otherwise, expand $\frac{4x^2+31x+30}{(x+4)(2x+3)}$ in ascending powers of x, as far as the term in x^2 . Give each coefficient as a simplified fraction. (7)

← Sections 4.1, 4.2, 4.3

Challenge

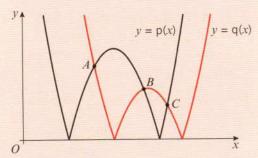
1 The functions f and g are defined by $f(x) = -3|x+3| + 15, x \in \mathbb{R}$ $g(x) = -\frac{3}{4}x + \frac{3}{2}, x \in \mathbb{R}$ The diagram shows a sketch of the graphs y = f(x) and y = g(x), which intersect at points A and B. M is the midpoint of AB. The circle C, with centre M, passes through points A and B, and meets y = f(x) at point P as shown in the diagram.



- a Find the equation of the circle.
- **b** Find the area of the triangle APB.

← Section 2.6

- **2** Given that $a_{n+1} = a_n + k$, $a_1 = m$ and $\sum_{i=6}^{11} a_i = \sum_{i=12}^{15} a_i$ show that $m = \frac{5}{2}k$. \leftarrow Section 3
- 3 The diagram shows a sketch of the functions $p(x) = |x^2 - 8x + 12|$ and $q(x) = |x^2 - 11x + 28|$.



Find the exact values of the x-coordinates of the points A, B and C. ← Section 2.5