Exam-style practice

Mathematics AS Level Paper 1: Pure Mathematics

Time: 2 hours

You must have: Mathematical Formulae and Statistical Tables, Calculator

1 a Given that
$$4 = 64^n$$
, find the value of n . (1)

b Write $\sqrt{50}$ in the form $k\sqrt{2}$ where k is an integer to be determined. (1)

Find the equation of the line parallel to 2x - 3y + 4 = 0 that passes through the point (5, 6). Give your answer in the form y = ax + b where a and b are rational numbers. (3)

3 A student is asked to evaluate the integral $\int_{1}^{2} \left(x^4 - \frac{3}{\sqrt{x}} + 2\right) dx$ The student's working is shown below

$$\int_{1}^{2} \left(x^{4} - \frac{3}{\sqrt{x}} + 2 \right) dx = \int_{1}^{2} (x^{4} - 3x^{\frac{1}{2}} + 2) dx$$

$$= \left[\frac{x^{5}}{5} - 2x^{\frac{3}{2}} + 2x \right]_{1}^{2}$$

$$= \left(\frac{1}{5} - 2 + 2 \right) - \left(\frac{32}{5} - 2\sqrt{8} + 4 \right)$$

$$= -4.54 \text{ (3 s.f.)}$$

a Identify two errors made by the student.

giving each solution in degrees.

b Evaluate the definite integral, giving your answer correct to 3 significant figures.

4 Find all the solutions in the interval $0 \le x \le 180^{\circ}$ of $2\sin^2(2x) - \cos(2x) - 1 = 0$

(7)

(2)

(2)

5 A rectangular box has sides measuring x cm, x + 3 cm and 2x cm.

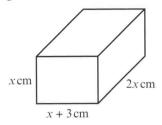


Figure 1

a Write down an expression for the volume of the box. (1)

Given that the volume of the box is 980 cm³,

b Show that
$$x^3 + 3x^2 - 490 = 0$$
. (2)

c Show that
$$x = 7$$
 is a solution to this equation. (1)

6
$$f(x) = x^3 - 5x^2 - 2 + \frac{1}{x^2}$$

The point P with x-coordinate -1 lies on the curve y = f(x). Find the equation of the normal to the curve at P, giving your answer in the form ax + by + c = 0 where a, b and c are positive integers. (7)

7 The population, P, of a colony of endangered Caledonian owlet-nightjars can be modelled by the equation $P = ab^t$ where a and b are constants and t is the time, in months, since the population was first recorded.

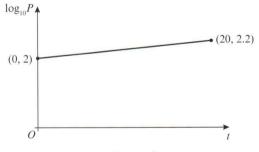


Figure 2

The line l shown in figure 2 shows the relationship between t and $log_{10}P$ for the population over a period of 20 years.

d Find the population predicted by the model when
$$t = 30$$
. (1)

8 Prove that
$$1 + \cos^4 x - \sin^4 x \equiv 2\cos^2 x$$
. (4)

9 Relative to a fixed origin, point A has position vector $6\mathbf{i} - 3\mathbf{j}$ and point B has position vector $4\mathbf{i} + 2\mathbf{j}$.

Find the magnitude of the vector \overrightarrow{AB} and the angle it makes with the unit vector **i**. (5)

10 A triangular lawn ABC is shown in figure 3:

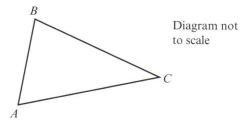


Figure 3

Given that AB = 7.5 m, BC = 10.6 m and AC = 12.7 m,

a Find angle BAC. (3)

Grass seed costs £1.25 per square metre.

b Find the cost of seeding the whole lawn. (5)

- 11 $g(x) = (x-2)^2(x+1)(x-7)$
 - a Sketch the curve y = g(x), showing the coordinates of any points where the curve meets or cuts the coordinate axes. (4)
 - **b** Write down the roots of the equation g(x + 3) = 0. (1)
- 12 Given that $9^{2x} = 27^{x^2-5}$, find the possible values of x. (6)
- 13 $f(x) = (1 3x)^5$
 - **a** Expand f(x), in ascending powers of x, up to the term in x^2 . Give each term in its simplest form.
 - **b** Hence find an approximate value for 0.97⁵.

(3)

(5)

- c State, with a reason, whether your approximation is greater or smaller than the true value. (2)
- **14** $f'(x) = \frac{\sqrt{x} x^2 1}{x^2}, x > 0$
 - a Show that f(x) can be written as $f(x) = -\frac{x^2 + 2\sqrt{x} 1}{x} + c$ where c is a constant. (5)

Given that f(x) passes through the point (3, -1),

- **b** find the value of c. Give your answer in the form $p + q\sqrt{r}$ where p, q and r are rational numbers to be found. (4)
- **15** A circle, *C*, has equation $x^2 + y^2 4x + 6y = 12$
 - a Show that the point A(5, 1) lies on C and find the centre and radius of the circle.
 - **b** Find the equation of the tangent to C at point A. Give your answer in the form y = ax + b where a and b are rational numbers. (4)
 - c The curve $y = x^2 2$ intersects this tangent at points P and Q. Given that O is the origin, find, as a fraction in simplest form, the exact area of the triangle POQ. (7)