3

Review exercise

The vector $9\mathbf{i} + q\mathbf{j}$ is parallel to the vector $2\mathbf{i} - \mathbf{j}$. Find the value of the constant q.

(2)

← Section 11.2

2 Given that $|5\mathbf{i} - k\mathbf{j}| = |2k\mathbf{i} + 2\mathbf{j}|$, find the exact value of the positive constant k. (4)

← Section 11.3

E/P) 3 Given the four points X(9, 6), Y(13, -2), Z(0, -15), and C(1, -3),

a Show that $|\overrightarrow{CX}| = |\overrightarrow{CY}| = |\overrightarrow{CZ}|$. (3)

b Using your answer to part a or otherwise, find the equation of the circle which passes through the points X, Y and Z.

← Sections 6.2, 11.4

In the triangle \overrightarrow{ABC} , $\overrightarrow{AB} = 9\mathbf{i} + 2\mathbf{j}$ and $\overrightarrow{AC} = 7\mathbf{i} - 6\mathbf{j}$.

a Find \overrightarrow{BC} . (2)

- **b** Prove that the triangle *ABC* is isosceles. (3)
- c Show that $\cos \angle ABC = \frac{1}{\sqrt{5}}$ (4)

← Sections 9.1, 11.5

5 The vectors \mathbf{a} , \mathbf{b} and \mathbf{c} are given as $\mathbf{a} = \begin{pmatrix} 8 \\ 23 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} -15 \\ x \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} -13 \\ 2 \end{pmatrix}$, where x is an integer. Given that $\mathbf{a} + \mathbf{b}$ is parallel to $\mathbf{b} - \mathbf{c}$, find the value of x.

← Section 11.2

 $\mathbf{F}_1 = 2\mathbf{i} - 5\mathbf{j}$ newtons $\mathbf{F}_2 = \mathbf{i} + \mathbf{j}$ newtons The resultant force **R** acting on the particle is given by $\mathbf{R} = \mathbf{F}_1 + \mathbf{F}_2$.

6 Two forces, \mathbf{F}_1 and \mathbf{F}_2 , act on a particle.

a Calculate the magnitude of R in newtons.(3)

A third force, \mathbf{F}_3 begins to act on the particle, where $\mathbf{F}_3 = k\mathbf{j}$ newtons and k is a positive constant. The new resultant force is given by $\mathbf{R}_{\text{new}} = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3$.

b Given that the angle between the line of action of \mathbf{R}_{new} and the vector \mathbf{i} is 45 degrees, find the value of k. (3)

← Section 11.6

7 A helicopter takes off from its starting position O and travels 100 km on a bearing of 060°. It then travels 30 km due east before landing at point A. Given that the position vector of A relative to O is (mi + nj) km, find the exact values of m and n. (4)

← Sections 10.2, 11.6

- 8 At the very end of a race, Boat A has a position vector of $(-65\mathbf{i} + 180\mathbf{j})$ m and Boat B has a position vector of $(100\mathbf{i} + 120\mathbf{j})$ m. The finish line has a position vector of $10\mathbf{i}$ km.
 - **a** Show that Boat *B* is closer to the finish line than Boat *A*.

Boat A is travelling at a constant velocity of $(2.5\mathbf{i} - 6\mathbf{j})$ m/s and Boat B is travelling at a constant velocity of $(-3\mathbf{i} - 4\mathbf{j})$ m/s.

b Calculate the speed of each boat.
Hence, or otherwise, determine the result of the race.

← Section 11.6

9 Prove, from first principles, that the derivative of 5x² is 10x. (4)
 ← Section 12.2

- 10 Given that $y = 4x^3 1 + 2x^{\frac{1}{2}}, x > 0$, find $\frac{dy}{dx}$. (2) \leftarrow Section 12.5
- 11 The curve C has equation $y = 4x + 3x^{\frac{3}{2}} 2x^2, x > 0.$ **a** Find an expression for $\frac{dy}{dx}$ (2)
 - **b** Show that the point P(4, 8) lies on C. (1)
 - c Show that an equation of the normal to C at point P is 3y = x + 20. (2)

The normal to C at P cuts the x-axis at point Q.

d Find the length PQ, giving your answer in simplified surd form. (2)

← Section 12.6

- 12 The curve C has equation $y = 4x^2 + \frac{5-x}{x}$, $x \ne 0$. The point P on C has x-coordinate 1.
 - a Show that the value of $\frac{dy}{dx}$ at P is 3. (3)
 - **b** Find an equation of the tangent to *C* at *P*. (3

This tangent meets the x-axis at the point (k, 0).

c Find the value of k. (1)

← Section 12.6

(2)

- 13 $f(x) = \frac{(2x+1)(x+4)}{\sqrt{x}}, x > 0.$
 - a Show that f(x) can be written in the form $Px^{\frac{3}{2}} + Qx^{\frac{1}{2}} + Rx^{-\frac{1}{2}}$, stating the values of the constants P, Q and R.

b Find f'(x). (3)

c A curve has equation y = f(x). Show that the tangent to the curve at the point where x = 1 is parallel to the line with equation 2y = 11x + 3. (3

← Section 12.6

14 Prove that the function $f(x) = x^3 - 12x^2 + 48x$ is increasing for all $x \in \mathbb{R}$. (3)

← Section 12.7

15 The diagram shows part of the curve with equation $y = x + \frac{2}{x} - 3$. The curve crosses the x-axis at A and B and the point C is the minimum point of the curve.

a Find the coordinates of A and B.

(2)

b Find the exact coordinates of *C*, giving your answers in surd form. (4)

← Section 12.9

- 16 A company makes solid cylinders of variable radius r cm and constant volume 128π cm³.
 - a Show that the surface area of the cylinder is given by $S = \frac{256\pi}{r} + 2\pi r^2$.
 - b Find the minimum value for the surface area of the cylinder. (4)

← Section 12.11

(E) 17 Given that $y = 3x^2 + 4\sqrt{x}$, x > 0, find

 $\mathbf{a} \ \frac{\mathrm{d}y}{\mathrm{d}x} \tag{2}$

- $\mathbf{b} \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} \tag{2}$
- $\mathbf{c} \int y dx$ (3)

← Sections 12.8, 13.2

E 18 The curve C with equation y = f(x) passes through the point (5, 65).

Given that $f'(x) = 6x^2 - 10x - 12$,

- **a** use integration to find f(x) (3)
- **b** hence show that f(x) = x(2x + 3)(x 4)

c sketch C, showing the coordinates of

the points where C crosses the x-axis. (3)

← Sections 4.1, 13.3

19 Use calculus to evaluate $\int_{1}^{8} (x^{\frac{1}{3}} - x^{-\frac{1}{3}}) dx.$ $\leftarrow Section 13.4$

- E/P
 - 20 Given that $\int_0^6 (x^2 kx) dx = 0$, find the value of the constant k. (3)

← Section 13.4

- E/P
- 21 The diagram shows a section of the curve with equation $y = -x^4 + 3x^2 + 4$. The curve intersects the *x*-axis at points *A* and *B*. The finite region *R*, which is shown shaded, is bounded by the curve and the *x*-axis.

- a Show that the equation $-x^4 + 3x^2 + 4 = 0$ only has two solutions, and hence or otherwise find the coordinates of A and B. (3)
- **b** Find the area of the region *R*.

← Sections 4.2, 13.5

- (E)
 - 22 The diagram shows the shaded region T which is bounded by the curve y = (x 1)(x 4) and the x-axis. Find the area of the shaded region T. (4)

- E/P
- 23 The diagram shows the curve with equation $y = 5 x^2$ and the line with equation y = 3 x. The curve and the line intersect at the points P and Q.

a Find the coordinates of P and Q. (3)

b Find the area of the finite region between PQ and the curve.(6)

← Section 13.7

- E
 - 24 The graph of the function $f(x) = 3e^{-x} 1$, $x \in \mathbb{R}$, has an asymptote y = k, and crosses the x and y axes at A and B respectively, as shown in the diagram.

- a Write down the value of k and the y-coordinate of A. (2)
- b Find the exact value of the x-coordinate of B, giving your answer as simply as possible. (2)

← Sections 14.2, 14.7

- E/P
- 25 A heated metal ball *S* is dropped into a liquid. As *S* cools, its temperature, *T* °C, *t* minutes after it enters the liquid, is modelled by

 $T = 400e^{-0.05t} + 25, \quad t \ge 0.$

- a Find the temperature of S as it enters the liquid. (1)
- b Find how long S is in the liquid before its temperature drops to 300 °C.
 Give your answer to 3 significant figures.
 (3)
- c Find the rate, $\frac{dT}{dt}$, in °C per minute to 3 significant figures, at which the temperature of S is decreasing at the instant t = 50. (3)
- **d** With reference to the equation given above, explain why the temperature of *S* can never drop to 20 °C. (2

The above model is found to be initially accurate, but the minimum temperature of S after a long period of time is found to be 15 °C.

e Use this information to suggest a refinement to the original equation. (2)

← Sections 14.3, 14.7

- 26 a Find, to 3 significant figures, the value of x for which $5^x = 0.75$. (2)
 - **b** Solve the equation $2\log_5 x \log_5 3x = 1$ (3)

`

← Sections 14.5, 14.6

- 27 a Solve $3^{2x-1} = 10$, giving your answer to 3 significant figures. (3)
 - **b** Solve $\log_2 x + \log_2 (9 2x) = 2$ (3)

← Sections 14.5, 14.6

- **28 a** Express $\log_p 12 (\frac{1}{2}\log_p 9 + \frac{1}{3}\log_p 8)$ as a single logarithm to base p.
 - **b** Find the value of x in $\log_4 x = -1.5$. (2)

← Sections 14.4, 14.5

- 29 Find the exact solutions to the equations
 - **a** $\ln x + \ln 3 = \ln 6$ (2)
 - **b** $e^x + 3e^{-x} = 4$ (4)

← Section 14.7

30 The table below shows the population of Angola between 1970 and 2010.

Year	Population, P (millions)
1970	5.93
1980	7.64
1990	10.33
2000	13.92
2010	19.55

This data can be modelled using an exponential function of the form $P = ab^t$, where t is the time in years since 1970 and a and b are constants.

a Copy and complete the table below, giving your answers to 2 decimal places.

Time in years since 1970, t	log P
0	0.77
10	
20	
30	
40	

- b Plot a graph of log P against t using the values from your table and draw in a line of best fit.
 (2)
- **c** By rearranging $P = ab^t$, explain how the graph you have just drawn supports the assumed model. (3)
- **d** Use your graph to estimate the values of *a* and *b* to two significant figures. **(4)**

← Section 14.8

- 31 Given that x, y > 0 satisfy the equation $\log 2 + \log x = \log y + \log (x + y)$,
 - **a** show that $x = \frac{y^2}{2 y}$ (3)
 - b state the full restriction on the value of y, and justify your answer. (2)

Challenge

- **1** The position vector of a moving object is given by $(\cos \theta)\mathbf{i} + (\sin \theta)\mathbf{j}$, where $0 \le \theta \le 90^\circ$.
 - **a** Find the value of θ when the object has a bearing of 090° from the origin.
 - b Calculate the magnitude of the position vector. ← Sections 10.2, 10.3, 11.3, 11.4
- **2** The graph of the cubic function y = f(x) has turning points at (-3, 76) and (2, -49).
 - **a** Show that $f'(x) = k(x^2 + x 6)$, where k is a constant.
 - **b** Express f(x) in the form $ax^3 + bx^2 + cx + d$, where a, b, c and d are real constants to be found. \leftarrow Sections 12.9, 13.3
- **3** Given that $\int_0^9 f(x) dx = 24.2$, state the value of $\int_0^9 (f(x) + 3) dx$. \leftarrow Sections 4.5, 13.5
- **4** The functions f and g are defined as $f(x) = x^3 kx + 1$, where k is a constant, and $g(x) = e^{2x}$, $x \in \mathbb{R}$. The graphs of y = f(x) and y = g(x) intersect at the point P, where x = 0.
 - a Confirm that f(0) = g(0) and hence state the coordinates of P.
 - **b** Given that the tangents to the graphs at *P* are perpendicular, find the value of *k*.

← Sections 5.3, 14.3