Review exercise

- E/P
- 1 A curve has equation $y = \frac{1}{2}x^2 + 4\cos x$. Show that an equation of the normal to the curve at $x = \frac{\pi}{2}$ is

$$8y(8-\pi) - 16x + \pi(\pi^2 - 8\pi + 8) = 0$$
 (7)

← Section 9.1

E/P

- 6 a Show that if $y = \csc x$ then $\frac{dy}{dx} = -\csc x \cot x$ (4)
 - **b** Given $x = \csc 6y$, find $\frac{dy}{dx}$ in terms (6)

← Section 9.6

2 A curve has equation $y = e^{3x} - \ln(x^2)$.

Show that an equation of the tangent at x = 2 is $y - (3e^6 - 1)x - 2 + \ln 4 + 5e^6 = 0$

(6)

← Section 9.2

7 Assuming standard results for $\sin x$ and $\cos x$, prove that the derivative of $\arcsin x$

is
$$\frac{1}{\sqrt{1-x^2}}$$

← Section 9.6

- E/P
- 3 A curve has equation

$$y = -\frac{3}{(4-6x)^2}, x \neq \frac{2}{3}$$

Find an equation of the normal to the curve at x = 1 in the form ax + by + c = 0, where a, b and c are integers.

← Section 9.3

- 4 A curve C has equation $y = (2x 3)^2 e^{2x}$.
 - a Use the product rule to find $\frac{dy}{dx}$ (3)
 - b Hence find the coordinates of the (3)stationary points of C.

← Section 9.4

- 5 The curve C has equation $y = \frac{(x-1)^2}{\sin x}$
 - a Use the quotient rule to find $\frac{dy}{dx}$ (3)
 - b Show that the equation of the tangent to the curve at $x = \frac{\pi}{2}$ is

$$y = (\pi - 2)x + \left(1 - \frac{\pi^2}{4}\right)$$
 (4)

- Section 9.5

- - 8 A curve has parametric equations

$$x = 2 \cot t$$
, $y = 2 \sin^2 t$, $0 < t \le \frac{\pi}{2}$

- **a** Find $\frac{dy}{dx}$ in terms of t.
- (3)
- b Find an equation of the tangent to the curve at the point where $t = \frac{\pi}{4}$ (3)
- c Find a Cartesian equation of the curve in the form y = f(x). State the domain on which the curve is defined. (3)

← Section 9.7

- 9 The curve C has parametric equations

$$x = \frac{1}{1+t}$$
, $y = \frac{1}{1-t}$, $-1 < t < 1$

The line *l* is a tangent to *C* at the point where $t = \frac{1}{2}$

- a Find an equation for the line l. (5)
- **b** Show that a Cartesian equation for the

curve C is
$$y = \frac{x}{2x-1}$$

← Section 9.7

10 A curve *C* is described by the equation

$$3x^2 - 2y^2 + 2x - 3y + 5 = 0$$

Find an equation of the normal to C at the point (0, 1), giving your answer in the form ax + by + c = 0, where a, b and c are integers.

← Section 9.8

- 11 A set of curves is given by the equation $\sin x + \cos y = 0.5$
 - a Use implicit differentiation to find an expression for $\frac{dy}{dx}$ (4)

For $-\pi < x < \pi$ and $-\pi < y < \pi$

b find the coordinates of the points

where
$$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$$
. (3)

← Section 9.8

12 A curve C has equation

$$y = x^2 e^{-x}, x < 0$$

Show that C is convex for all x < 0. (5)

← Sections 9.4, 9.9

13 The volume of a spherical balloon of radius r cm is $V \text{ cm}^3$, where $V = \frac{4}{3}\pi r^3$.

a Find
$$\frac{\mathrm{d}V}{\mathrm{d}r}$$
 (1)

The volume of the balloon increases with time *t* seconds according to the formula

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{1000}{(2t+1)^2}, \ t \ge 0.$$

b Find an expression in terms of r and t for $\frac{dr}{dt}$ (3)

← Section 9.10

- 14 $g(x) = x^3 x^2 1$
 - a Show that there is a root α of g(x) = 0 in the interval [1.4, 1.5].
 - **b** By considering a change of sign of g(x) in a suitable interval, verify that $\alpha = 1.466$ correct to 3 decimal places.

(3)

← Section 10.1

- 15 $p(x) = \cos x + e^{-x}$
 - a Show that there is a root α of p(x) = 0 in the interval [1.7, 1.8]. (2)
 - **b** By considering a change of sign of p(x) in a suitable interval, verify that $\alpha = 1.746$ correct to 3 decimal places.

(3)

← Section 10.1

- **E)** 16 $f(x) = e^{x-2} 3x + 5$
 - a Show that the equation f(x) = 0 can be written as

$$x = \ln(3x - 5) + 2, x > \frac{5}{3}$$
 (2)

The root of f(x) = 0 is α .

The iterative formula

 $x_{n+1} = \ln(3x_n - 5) + 2$, $x_0 = 4$ is used to find a value for α .

b Calculate the values of x_1, x_2 and x_3 to 4 decimal places. (3)

← Section 10.2

- **E** 17 $f(x) = \frac{1}{(x-2)^3} + 4x^2, x \neq 2$
 - a Show that there is a root α of f(x) = 0 in the interval [0.2, 0.3]. (2)
 - **b** Show that the equation f(x) = 0 can be written in the form $x = \sqrt[3]{\frac{-1}{4x^2}} + 2$. (3)
 - c Use the iterative formula

$$x_{n+1} = \sqrt[3]{\frac{-1}{4x_n^2}} + 2$$
, $x_0 = 1$ to calculate the

values of x_1, x_2, x_3 and x_4 giving your answers to 4 decimal places. (3)

d By considering the change of sign of f(x) in a suitable interval, verify that $\alpha = 1.524$ correct to 3 decimal places.

(2)

← Section 10.2

- 18 The diagram shows part of the curve with equation y = f(x), where $f(x) = \frac{1}{10}x^2e^x - 2x - 10$. The point A,

with x-coordinate a, is a stationary point on the curve. The equation f(x) = 0 has a root α in the interval [2.9, 3.0].

- a Explain why $x_0 = a$ is not suitable to use as a first approximation if using the Newton-Raphson process to find an approximation for α .
- **b** Taking $x_0 = 2.9$ as a first approximation to α, apply the Newton–Raphson process once to find f(x) to obtain a second approximation to α . Give your answer to 3 decimal places.

← Section 10.3

- **E/P** 19 $f(x) = \frac{3}{10}x^3 x^{\frac{2}{3}} + \frac{1}{x} 4, x \neq 0$
 - a Show that there is a root α of f(x) = 0in the intervals

b Show that the equation f(x) = 0 can be written in the form

$$x = \sqrt[3]{\frac{10}{3} \left(4 + x^{\frac{2}{3}} - \frac{1}{x} \right)}$$
 (3)

c Use the iterative formula,

$$x_{n+1} = \sqrt[3]{\frac{10}{3} \left(4 + x_n^{\frac{2}{3}} - \frac{1}{x_n}\right)}, x_0 = 2.5 \text{ to}$$

calculate the values of x_1, x_2, x_3 and x_4 giving your answers to 4 decimal places.

d Taking $x_0 = 0.3$ as a first approximation to α , apply the Newton-Raphson process once to find f(x) to obtain a second approximation to α . Give your answer to 3 decimal places.

← Sections 10.2, 10.3

- 20 The value of a currency x hours into a 14-hour trading window can be modelled by the function

$$v(x) = 0.12 \cos\left(\frac{2x}{5}\right) - 0.35 \sin\left(\frac{2x}{5}\right) + 120$$

where $0 \le x \le 14$.

Given that v(x) can be written in the form $R\cos\left(\frac{2x}{5} + \alpha\right) + 120$ where R > 0 and $0 \le \alpha \le \frac{\pi}{2}$

- a find the value of R and the value of α , correct to 4 decimal places. (4)
- **b** Use your answer to part **a** to find v'(x). (3)
- c Show that the curve has a turning point in the interval [4.7, 4.8]. (1)
- **d** Taking x = 12.6 as a first approximation, apply the Newton-Raphson method once to v'(x) to obtain a second approximation for the time when the share index is a maximum. Give your answer to 3 decimal places.
- e By considering the change of sign of v'(x) in a suitable interval, verify that the x-coordinate at point B is 12.6067, correct to 4 decimal places.

← Sections 7.5, 9.3, 10.4

(3)

) 21 Given $\int_{a}^{3} (12 - 3x)^{2} dx = 78$, find the value of a. (4)

← Section 11.2

- 22 a By expanding $\cos(5x + 2x)$ and $\cos(5x 2x)$ using the double-angle formulae, or otherwise, show that $\cos 7x + \cos 3x \equiv 2 \cos 5x \cos 2x$. (4)
 - **b** Hence find $\int 6 \cos 5x \cos 2x \, dx$ (3)

← Sections 7.1, 11.3

P) 23 Given that $\int_0^m mx^3 e^{x^4} dx = \frac{3}{4} (e^{81} - 1)$, find the value of m. (3)

← Section 11.4

24 Using the substitution $u^2 = 2x - 1$, or otherwise, find the exact value of

$$\int_{1}^{5} \frac{3x}{\sqrt{2x-1}} \, \mathrm{d}x \tag{6}$$

← Section 11.5

25 Use the substitution $u = 1 - x^2$ to find the exact value of

$$\int_0^{\frac{1}{2}} \frac{x^3}{(1-x^2)^{\frac{1}{2}}} dx \tag{6}$$

← Section 11.5

26 $f(x) = (x^2 + 1) \ln x$

Find the exact value of $\int_1^e f(x) dx$. (7)

4 Section 11 6

- 27 a Express $\frac{5x+3}{(2x-3)(x+2)}$ in partial fractions. (3)
 - **b** Hence find the exact value of $\int_{2}^{6} \frac{5x+3}{(2x-3)(x+2)} dx$, giving your answer as a single logarithm. (4)

← Section 11.7

(E/P)

28 The curve shown in the diagram has parametric equations

 $x = t - 2 \sin t$, $y = 1 - 2 \cos t$, $0 \le t \le 2\pi$

a Show that the curve crosses the x-axis where $t = \frac{\pi}{2}$ and $t = \frac{5\pi}{3}$ (3)

The finite region *R* is enclosed by the curve and the *x*-axis, as shown shaded in the diagram.

b Show that the area R is given by

$$\int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} (1 - 2\cos t)^2 \, \mathrm{d}t \tag{3}$$

c Use this integral to find the exact value of the shaded area. (4)

E/P)

29 The curve shown in the diagram has parametric equations

$$x = a \cos 3t, y = a \sin t, -\frac{\pi}{6} \le t \le \frac{\pi}{6}.$$

The curve meets the axes at points A, B and C, as shown.

The straight lines shown are tangents to the curve at the points A and C and meet the x-axis at point D.

a Find, in terms of a, the area of the finite region between the curve, the tangent at A and the x-axis, shown shaded in the diagram.

Given that the total area of the finite region between the two tangents and the curve is 10 cm²

b find the value of a.

E/P

30

The diagram shows the graph of the curve with equation

$$y = xe^{2x}, x \ge 0.$$

The finite region R bounded by the lines x = 1, the x-axis and the curve is shown shaded in the diagram.

a Use integration to find the exact area of R. (4)

The table shows values of x and y between 0 and 1.

x	0	0.2	0.4	0.6	0.8	1
$y = xe^{2x}$	0	0.29836		1.99207		7.38906

- **b** Find the missing values in the table. (1)
- c Using the trapezium rule, with all the values for y in the completed table, find an approximation for the area of R, giving your answer to 4 significant figures.
 (4)
- d Calculate the percentage error in your answer in part c. (2

← Sections, 11.6, 11.9

E/P

- 31 a Express $\frac{2x-1}{(x-1)(2x-3)}$ in partial fractions. (4)
 - **b** Given that $x \ge 2$, find the general solution of the differential equation $(2x 3)(x 1)\frac{dy}{dx} = (2x 1)y$ (4)
 - c Hence find the particular solution of this differential equation that satisfies y = 10 at x = 2, giving your answer in the form y = f(x).

← Sections 11.7, 11.10

E/P

32 A spherical balloon is being inflated in such a way that the rate of increase of its volume, $V \text{cm}^3$, with respect to time $t \text{ seconds is given by } \frac{dV}{dt} = \frac{k}{V}$, where k is a positive constant.

Given that the radius of the balloon is r cm, and that $V = \frac{4}{3}\pi r^3$,

a prove that *r* satisfies the differential equation

$$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{B}{r^5}$$

where *B* is a constant.

 b Find a general solution of the differential equation obtained in part a.
 (5)

← Sections 9.10, 11.10, 11.11

(4)

(2)

E/P

- 33 Liquid is pouring into a container at a constant rate of 20 cm³ s⁻¹ and is leaking out at a rate proportional to the volume of the liquid already in the container.
 - a Explain why, at time t seconds, the volume, $V \text{cm}^3$, of liquid in the container satisfies the differential equation

$$\frac{\mathrm{d}V}{\mathrm{d}t} = 20 - kV$$

where k is a positive constant.

The container is initially empty.

b By solving the differential equation, show that

$$V = A + Be^{-kt}$$

giving the values of A and B in terms of k. (5)

Given also that $\frac{dV}{dt} = 10$ when t = 5,

c find the volume of liquid in the container at 10s after the start. (3)

← Sections 11.10, 11.11

- 34 The rate of decrease of the concentration of a drug in the blood stream is proportional to the concentration *C* of that drug which is present at that time. The time *t* is measured in hours from the administration of the drug and *C* is measured in micrograms per litre.
 - a Show that this process is described by the differential equation $\frac{dC}{dt} = -kC$, explaining why k is a positive constant.
 - b Find the general solution of the differential equation, in the form C = f(t).

After 4 hours, the concentration of the drug in the bloodstream is reduced to 10% of its starting value C_0 .

c Find the exact value of *k*.

k. (3)

(4)

← Sections 11.10, 11.11

35 The coordinates of P and Q are (-1, 4, 6) and (8, -4, k) respectively. Given that the distance from P to Q is $7\sqrt{5}$ units, find the possible values of k.

← Section 12.1

36 The diagram shows the triangle ABC.

Given that $\overrightarrow{AB} = -\mathbf{i} + 6\mathbf{j} + 4\mathbf{k}$ and $\overrightarrow{AC} = 5\mathbf{i} - 2\mathbf{j} - 3\mathbf{k}$, find the size of $\angle BAC$ to one decimal place. (5

← Section 12.2

37 P is the point (-6, 3, 2) and Q is the point (4, -2, 0). Find:

a the vector \overrightarrow{PO}

(1)

b the unit vector in the direction of

$$\overrightarrow{PQ}$$
 (2)

c the angle \overrightarrow{PQ} makes with the positive z-axis. (2)

The vector $\overrightarrow{AB} = 30\mathbf{i} - 15\mathbf{j} + 6\mathbf{k}$.

d Explain, with a reason, whether the vectors \overrightarrow{AB} and \overrightarrow{PQ} are parallel. (2)

← Section 12.2

The vertices of triangle MNP have coordinates M(-2, 0, 5), N(8, -5, 1) and P(k, -2, -6). Given that triangle MNP is isosceles and k is a positive integer, find the value of k.

← Section 12.3

P) 39 Given that $-6\mathbf{i} + 40\mathbf{j} + 16\mathbf{k} = 3p\mathbf{i} + (8 + qr)\mathbf{j} + 2pr\mathbf{k}$ find the values of p, q and r. (3)

← Section 12.3

Challenge

1 The curve C has implicit equation

$$ay + x^2 + 4xy = y^2$$

- **a** Find, in terms of *a* where necessary, the coordinates of the points such that $\frac{dy}{dx} = 0$.
- **b** Given that $a \ne 0$, show that there does not exist a point where $\frac{dx}{dy} = 0$. \leftarrow Section 9.
- 2 The diagram shows the curves $y = \sin x + 2$ and $y = \cos 2x + 2$, $0 \le x \le \frac{3\pi}{2}$

Find the exact value of the total shaded area on the diagram.

